Skip to content

Richard @rdgao & Michael @michaeldeistler: using neural network-based regression and density estimation for Generalized Bayesian Inference

License

Notifications You must be signed in to change notification settings

mackelab/neuralgbi_diffusion

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

neuralgbi

Project owners: Richard Gao & Michael Deistler

Amortized neural Generalized Bayesian Inference for SBI applications: using neural network-based regression and density estimation to do generalized Bayesian inference, i.e., using distance functions as pseudo-likelihood functions.

Installing dependencies

pip install -e . to run setup. pip install -e packages/sbi/ to install local version of sbi.

Generating figures

  1. Run notebooks in paper/fig1/01_generate_figure.ipynb
  2. Convert the svg via invoke convert 1
  3. Upload to overleaf

Generating benchmark results

  1. Make x_o for each task with:
    python gbi.benchmark.task.generate_xo --task-name <task-name> -n 1000
  2. Generate ground-truth GBI posterior samples from x_os:
    python -m gbi.benchmark.generate_gt.run_generate_gt -m task.xo_index=0,1,2,3,4,5,6,7,8,9 task.is_specified='specified','misspecified' task.is_known='known','unknown' task.beta=2.,10.,50. task.name=gaussian_mixture
    This command could run a while.
  3. Train algorithms (can be done separately from step 2): cd gbi/benchmark/run_algorithms/, python run_training.py -m task.name=gaussian_mixture algorithm=NPE,NLE,GBI
  4. Do inference with trained algorithms: cd gbi/benchmark/run_algorithms/, python run_inference.py -m algorithm=GBI trained_inference_datetime='$YYYY_MM_DD__hh_mm_ss' task.name='gaussian_mixture' task.xo_index=0,1,2,3,4,5,6,7,8,9 task.is_specified=specified,misspecified task.is_known=known,unknown task.beta=2.,10.,50.. Note for NPE and NLE there is no need to sweep over beta.

About

Richard @rdgao & Michael @michaeldeistler: using neural network-based regression and density estimation for Generalized Bayesian Inference

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.3%
  • Other 0.7%