Project owners: Richard Gao & Michael Deistler
Amortized neural Generalized Bayesian Inference for SBI applications: using neural network-based regression and density estimation to do generalized Bayesian inference, i.e., using distance functions as pseudo-likelihood functions.
pip install -e .
to run setup.
pip install -e packages/sbi/
to install local version of sbi
.
- Run notebooks in
paper/fig1/01_generate_figure.ipynb
- Convert the svg via
invoke convert 1
- Upload to overleaf
- Make x_o for each task with:
python gbi.benchmark.task.generate_xo --task-name <task-name> -n 1000
- Generate ground-truth GBI posterior samples from x_os:
This command could run a while.
python -m gbi.benchmark.generate_gt.run_generate_gt -m task.xo_index=0,1,2,3,4,5,6,7,8,9 task.is_specified='specified','misspecified' task.is_known='known','unknown' task.beta=2.,10.,50. task.name=gaussian_mixture
- Train algorithms (can be done separately from step 2):
cd gbi/benchmark/run_algorithms/
,python run_training.py -m task.name=gaussian_mixture algorithm=NPE,NLE,GBI
- Do inference with trained algorithms:
cd gbi/benchmark/run_algorithms/
,python run_inference.py -m algorithm=GBI trained_inference_datetime='$YYYY_MM_DD__hh_mm_ss' task.name='gaussian_mixture' task.xo_index=0,1,2,3,4,5,6,7,8,9 task.is_specified=specified,misspecified task.is_known=known,unknown task.beta=2.,10.,50.
. Note for NPE and NLE there is no need to sweep overbeta
.