Domain : Computer Vision, Machine Learning Sub-Domain : Deep Learning, Image Recognition Techniques : Deep Convolutional Neural Network, Feature Extraction, Classical ML Aglorithms Application : Image Recognition, Image Classification, Medical Imaging
1. Created an Intelligent System, for detecting Pneumonia from Chest X-Ray images, using a Custom Convolutional Neural Network and Classical ML Aglorithms. 2. The best of the classical ML Algoriths, Logistic Regression, attained a testing accuracy of 89.21%. 2. The Convololutional Neural Network attained a testing accuracy 88.41% (+-1.10%) and a loss of 0.41 (+-0.13%). Uncertainties are within a confidence interval of one standard deviation.
Dataset Name : Chest X-Ray Images (Pneumonia) Number of Classes : 2 Number/Size of Images : Total : 5856 ( 1.15 Gigabyte (GB)) Training : 5216 ( 1.07 Gigabyte (GB)) Validation : 16 ( 2.80 Megabyte (MB)) Testing : 624 (75.40 Megabyte (MB)) Dataset Links : Chest X-Ray Images Dataset (Kaggle) : Chest X-Ray Images Dataset (Original Dataset) Original Paper : Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning (Daniel S. Kermany, Michael Goldbaum, Wenjia Cai, M. Anthony Lewis, Huimin Xia, Kang Zhang) https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5
Best Classical Machine Learning Model Parameters Machine Learning Library: Keras Best Model : Logistic Regression Loss Function : categorical_crossentropy Training Parameters Max iterations : 100 Penalty : Manhattan (l1) C Hyperparameter : 0.01 Solver : Saga Training Time : 1 minutes Output (Prediction/Recognition/Classification Metrics) Testing Accuracy (F-1) Score : 89.21% Precision : 83.78% Recall (Pneumonia) : 95.38% Convolutional Neural Network Parameters Machine Learning Library: PyTorch Base Model : Custom Convolutional Neural Network Optimizers : Adam Loss Function : categorical_crossentropy Training Parameters Batch Size : 256 Number of Epochs : 10 Training Time : 110 minutes Output (Prediction/Recognition/Classification Metrics) Testing Accuracy (F-1) Score : 88.40% (+-1.10%) Loss : 0.41 (+-0.13) Precision : 88.37% (+-0.80%) Recall (Pneumonia) : 95.48% (+-1.80%)
Languages : Python Tools/IDE : Kaggle API Libraries : scikit-learn, PyTorch
Duration : June 2023 - July 2023 Current Version : v1.0 Last Update : 20.07.2023