marp | theme | class | size | style | header | footer |
---|---|---|---|---|---|---|
true |
default |
invert |
14580 |
img {background-color: transparent!important;}
a:hover, a:active, a:focus {text-decoration: none;}
header a {color: #ffffff !important; font-size: 40px;}
footer {color: #148ec8;}
|
[◇](#1 " ") |
Simon Chen 2023 |
markedown drawing UML (Unified Modeling Language) diagrams
- 1-train.js: generate nomnoml based on work instruction text
- 2-train.js: generate text based on nomnoml input
- 3-openFDA.js: data preparation
.. base model + training
- base model: GPT-4 or GPT-3.5 turbo
- training:
data: secured repository (Azure Cloud)
alogrithm:
+vectorstore embedding
+finetuinging (prompt engineering)
+nascent tools
(eg BLIP2, Salesforce)
data: mock wi-320 Tesla Maintenance Manual (https://onedrive.live.com/?cid=597A1F50B291367A&id=597A1F50B291367A%216571&parId=597A1F50B291367A%216234&o=OneUp)
vlidation_tesla
-- multiple iterations / multiple epochs
-
FDA API endpoint
https://api.fda.gov/device/event.json?search=device.generic_name:tomography&limit=1
-
Intervalize
// Poll OpenFDA every 60 minutes setInterval(checkAdverseEvents, 60 * 60 * 1000);