-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
129 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
using Plots | ||
using Convex | ||
using Mosek | ||
using SCS | ||
using Interpolations | ||
|
||
# This is a julia implementaiton of an example | ||
# from "ℓ1 Trend Filtering" by Kim et al (2009) | ||
|
||
I_sets = [ | ||
[1, 2000], | ||
[1, 968, 2000], | ||
[1, 339, 897, 2000], | ||
[1, 337, 983, 1145, 2000], | ||
[1, 317, 791, 885, 1207, 2000], | ||
[1, 350, 636, 755, 884, 1208, 2000], | ||
[1, 349, 631, 788, 834, 991, 1150, 2000], | ||
[1, 349, 631, 787, 835, 988, 1191, 1853, 2000], | ||
[1, 350, 636, 755, 887, 922, 976, 1181, 1853, 2000], | ||
[1, 365, 515, 545, 628, 769, 837, 987, 1190, 1853, 2000] | ||
] | ||
|
||
cost_l0 = [dev.find_optimal_y_values(ℓ, I_sets[k])[2] for k=1:10] | ||
|
||
|
||
#--- | ||
|
||
function is_local_max(y) | ||
v = zeros(y, Bool) | ||
for k=2:length(y)-1 | ||
v[k] = (y[k] >= y[k-1]) && (y[k] >= y[k+1]) | ||
end | ||
return v | ||
end | ||
|
||
#--- | ||
data = readdlm(joinpath(Pkg.dir("DynamicApproximations"),"examples","data","snp500.txt")) | ||
|
||
N = length(data) | ||
H = spdiagm((ones(N-2), -2*ones(N-2), ones(N-2)), (0,1,2)) | ||
|
||
x = Variable(N) | ||
|
||
|
||
#--- | ||
r = 6 | ||
I = I_sets[r] | ||
Y, _ = dev.find_optimal_y_values(ℓ, I) | ||
y_l0 = interpolate((I,), Y, Gridded(Linear()))[1.0:N] | ||
|
||
|
||
|
||
|
||
|
||
λ = 100 | ||
problem = minimize(0.5*sumsquares(x - data) + λ*norm(H*x, 1)) | ||
|
||
|
||
solve!(problem, MosekSolver([("QUIET", true)])) | ||
println("Opt. val: ",problem.optval, " (problem status: ", problem.status, ")") | ||
|
||
y_l1 = evaluate(x)[:] | ||
|
||
|
||
|
||
v = sortperm(abs.(H*y_l1) + 1*is_local_max(abs.(H*y_l1))) | ||
|
||
plot(H*y_l1) | ||
plot!(v[end-r+2:end], zeros(r-1), m=:circle) | ||
|
||
I_l1 = [1; sort(v[end-r+2:end]); N] | ||
Y_l1, f_l1 = dev.find_optimal_y_values(ℓ, I_l1) | ||
|
||
y_l10 = interpolate((I_l1,), Y_l1, Gridded(Linear()))[1.0:N] | ||
|
||
println("ℓ1: ", sum((evaluate(x) - data).^2)) | ||
println("ℓ0/ℓ1: ", sum((y_l10 - data).^2)) | ||
println("ℓ0: ", sum((y_l0 - data).^2)) | ||
|
||
|
||
#subplot(211) | ||
plot(data) | ||
#plot!(evaluate(x), color="green", linewidth=3) | ||
plot!(I, Y, color="red", linewidth=3) | ||
plot!(I_l1, Y_l1, l=(:cyan, :dash), linewidth=3) | ||
#--- | ||
|
||
λ_vec = logspace(1,4,60) | ||
cost = zeros(length(λ_vec), 10) | ||
|
||
for (k, λ)=enumerate(λ_vec) | ||
problem = minimize(0.5*sumsquares(x - data) + λ*norm(H*x, 1)) | ||
|
||
solve!(problem, MosekSolver([("QUIET", true)])) | ||
println("Opt. val: ",problem.optval, " (problem status: ", problem.status, ")") | ||
|
||
y_l1 = evaluate(x)[:] | ||
v = sortperm(abs.(H*y_l1) + 1*is_local_max(abs.(H*y_l1))) | ||
for r=1:10 | ||
I_l1 = [1; sort(v[end-r+2:end]); N] | ||
_, f_l1 = dev.find_optimal_y_values(ℓ, I_l1) | ||
cost[k, r] = f_l1 | ||
end | ||
end | ||
|
||
#--- | ||
|
||
#--- | ||
plot(log10(λ_vec), cost[:,3:end], show=true, yaxis=((0,10), 0:0.5:10) ) | ||
|
||
plot!([1.5, 2.5], [1,1]*cost_l0[3:end]') | ||
|
||
#--- | ||
[minimum(cost,1)' cost_l0] | ||
|
||
|
||
#--- | ||
costs = [42.8484 42.8484 | ||
9.25796 9.25796 | ||
4.46404 4.26137 | ||
3.13439 3.02902 | ||
3.09011 2.71251 | ||
2.68868 2.27944 | ||
2.16277 2.03848 | ||
1.94739 1.8517 | ||
1.89786 1.76981 | ||
1.75176 1.59654] | ||
|
||
plot(costs) |