Skip to content

Clusters post-processing: Visualization of feature space (2-d, 3-d & 4-d plots per cluster), clusters statistics, linear regression of clusters, etc. etc.

License

Notifications You must be signed in to change notification settings

miliaresis/SVR.CLUSTERS

Repository files navigation

SVR.CLUSTERS

  • Clusters post-processing, A win python program (https://winpython.github.io/) consisting of 3 modules clu_r.py and the 2 library MODULEs clu_data_headers, & clu_myf.py, that perform:
    1. Visualization of feature space with 2-d plots per cluster
    2. Visualization of feature space with 3-d plots per cluster
    3. Statistics of clusters (min, max calculation)
    4. Linear regression of 2-d feature spaces (eg. 3 combinations for ALOS, SRTM, ASTER GDEMs) per cluster
  • Video: https://vimeo.com/258236125
  • Data: Cluster image and the feature space images derived from related projects (SVR & SVR.DEM). The cluster image is named MASK.TIF (0= no data, 1, 2 ... for cluster classes). The feature space images (eg. pc2, pc3 reconstructed elevations) used in clustering are named 01.tif, 02.tif, etc. The vector data model in SVR.CLUSTERS differs from SVR & SVR.DEM projects, since the first column indicate a) 0 for no-data, and b) 1, 2 ... for cluster classes, while the next columns correspond to image data files (01, 02, 03 ..), for example the residual elevations of ALOS, SRTM, ASTER GDEMs.

Case studies

**Figure a2.** _2-d feature space visualization per cluster (7 clusters)_  

Example of output images

Figure a3. Clusters centroids (7 clusters)
Example of output images

Figure b1. Visualization of the reconstructed LST.
Example of output images

Figure c1. Selected 3d scattergrams per cluster.
Example of output images

Table c3. Min, max statistics per cluster.

NBG ALOS (m) SRTM (m) ASTER (m)
Clusters Min Max Min Max Min Max
3 -183.3 -8.2 -166.8 -7.4 18.5 350.8
5 -8.2 -0.9 -7.4 -0.7 4.6 18.5
6 -0.9 1.9 -0.7 1.8 -0.7 4.6
1 1.9 3.7 1.8 3.5 -4.2 -0.7
2 3.7 5.4 3.5 5 -7.3 -4.2
4 5.4 7.5 5 6.9 -11.2 -7.3
7 7.5 13 6.9 11.9 -21.8 -11.2
3 13 335.9 11.9 305.9 -634.7 -21.8

About

Clusters post-processing: Visualization of feature space (2-d, 3-d & 4-d plots per cluster), clusters statistics, linear regression of clusters, etc. etc.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages