This is naive implementation of PointPainting where any image segmentation network can be used for 3D point cloud segmentaiton where each point is labelled with a class.
pip install requirements.txt
pip install timm==0.3.2
CUDA 10.1
and pytorch 1.7.1
pip install torchvision==0.8.2
pip install timm==0.3.2
pip install mmcv-full==1.2.7
pip install opencv-python==4.5.1.48
cd SegFormer && pip install -e . --user
For more details for installtion visit SegFormer
Works for any dataset (edit calibration file)
This is implemented on KITTI360
python point_paint.py $PATH_TO_DATA $PATH_TO_CONFIG $PATH_TO_CHECKPOINT --device cuda:0 --palette cityscapes
python point_paint.py ./SegFormer local_configs/segformer/B5/segformer.b5.1024x1024.city.160k.py
./SegFormer/segformer.b5.1024x1024.city.160k.pth --device cuda:0 --palette cityscapes
Phase1
├── SegFormer Folders
├── data <--KITTI360
| ├── rgb
| ├── fused_pcd
├── calib.txt <-- calibration config from KITTI360
├── utils.py
├── calibration.py
├── point_paint.py