Skip to content

🎸 Hands-on tutorial for building RAG applications with LlamaIndex

License

Notifications You must be signed in to change notification settings

nicofretti/rag_and_roll

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

13 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🎸 RAG and ROLL with LlamaIndex - Hands-on Tutorial

Python 3.8+ LlamaIndex License: MIT

πŸŽ“ Learn RAG implementation with hands-on examples and step-by-step guidance

πŸ“š What is RAG?

Retrieval-Augmented Generation (RAG) supercharges LLMs by combining them with external knowledge retrieval. Think of it as giving your AI a searchable knowledge base to reference before responding!

🎯 What You'll Master

Topic Description
Setup Configure LlamaIndex environment
Data Processing Build document loaders and indexes
Retrieval Create efficient search systems
Query Engines Implement smart query processing
More ...
Real Examples Practical use cases

πŸ“‹ Prerequisites

  • Python 3.8+
  • Basic understanding of LLMs
  • Notebooks familiarity
  • OpenAI API key (optional, you can also use local models)

πŸš€ Getting Started

  • πŸ“¦ Lesson 01: Learn how to load and ingest data, and create your first index.
  • πŸ“¦ Lesson 02: Discover how to filter and rerank chunks, and build your first chat engine.
  • πŸ“¦ ... doing

πŸ“„ License

MIT Licensed. See LICENSE for details.

Happy RAG and ROLL! 🎸

About

🎸 Hands-on tutorial for building RAG applications with LlamaIndex

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published