Code and synthetic dataset generation for the CVPR 2018 paper "Learning Rich Features for Image Manipulation Detection"
tensorflow 0.12.1, python3.5.2, cuda 8.0.44 cudnn 5.1
Other packages please run:
pip install -r requirements.txt
-
Check if the cuda lib path in
compact_bilinear_pooling/sequential_fft/complie.sh
is correct. -
Run the command:
cd lib
make
cd compact_bilinear_pooling/sequential_fft
./compile.sh
For more detail, see https://github.com/ronghanghu/tensorflow_compact_bilinear_pooling
For ImageNet resnet101 pre-trained model, please download from https://github.com/endernewton/tf-faster-rcnn
- Download COCO 2014 dataset (http://cocodataset.org/#download) and COCO PythonAPI (https://github.com/cocodataset/cocoapi) and put in
coco_synthetic
folder. After this step the coco dataset folder 'cocostuff' will be created. - Change
dataDir
incoco_synthetic/demo.py
to the path of 'train2014' (e.g,./cocostuff/coco/train2014
) - Run
run_demo.sh 1 100
to choose the begin and end COCO category used for creating the tamper synthetic dataset. - Run
split_train_test.py
to make train/test split. (making sure that the images used to generate training set not overlap with the images for testing)
- Change the coco synthetic path in
lib/factory.py
:
coco_path= #FIXME
for split in ['coco_train_filter_single', 'coco_test_filter_single']:
name = split
__sets[name] = (lambda split=split: coco(split,2007,coco_path))
- Specify the ImageNet resnet101 pretrain model path in
train_faster_rcnn.sh
as below:
python3 ./tools/trainval_net.py \
--weight /path of res101.ckpt/data/imagenet_weights/res101.ckpt \ #FIXME
--imdb ${TRAIN_IMDB} \
--imdbval ${TEST_IMDB} \
--iters ${ITERS} \
--cfg cfgs/${NET}.yml \
--net ${NET} \
--set ANCHOR_SCALES ${ANCHORS} ANCHOR_RATIOS ${RATIOS} TRAIN.STEPSIZE ${STEPSIZE} ${EXTRA_ARGS}
- Specify the dataset, gpu, and network in
train_dist_faster.sh
as below as run the file
./train_faster_rcnn.sh 0 coco res101_fusion EXP_DIR coco_flip_0001_bilinear_new
- Specify the ImageNet resnet101 pretrain model path in
train_faster_rcnn.sh
as below:
python3 ./tools/trainval_net.py \
--weight /path of synthetic pretrain model/res101_fusion_faster_rcnn_iter_60000.ckpt \ #FIXME
--imdb ${TRAIN_IMDB} \
--imdbval ${TEST_IMDB} \
--iters ${ITERS} \
--cfg cfgs/${NET}.yml \
--net ${NET} \
--set ANCHOR_SCALES ${ANCHORS} ANCHOR_RATIOS ${RATIOS} TRAIN.STEPSIZE ${STEPSIZE} ${EXTRA_ARGS}
- Specify the dataset, gpu, and network in
train_dist_faster.sh
as below as run the file (use NIST as an example)
./train_faster_rcnn.sh 0 NIST res101_fusion EXP_DIR NIST_flip_0001_bilinear_new
- Check the model path match well with
NET_FINAL
intest_faster_rcnn.sh
, making sure the checkpoint iteration exist in model output path. Otherwise, change the iteration numberITERS
as needed.
coco)
TRAIN_IMDB="coco_train_filter_single"
TEST_IMDB="coco_test_filter_single"
ITERS=60000
ANCHORS="[8,16,32,64]"
RATIOS="[0.5,1,2]"
;;
- Run
test_dist_faster.sh
. If things go correcty, it should print outMAP
and savetamper.txt
andtamper.png
indicating the detection result and PR curve.
https://drive.google.com/open?id=1vIAFsftjmHg2J5lJgO92C1Xmyw539p_B
If this code or dataset helps your research, please cite our paper:
@inproceedings{zhou2018learning,
title={Learning Rich Features for Image Manipulation Detection},
author={Zhou, Peng and Han, Xintong and Morariu, Vlad I and Davis, Larry S},
booktitle = {CVPR},
year={2018}
}