A High Level API for Deep Learning in JAX
- π Easy-to-use: Elegy provides a Keras-like high-level API that makes it very easy to use for most common tasks.
- πͺβ Flexible: Elegy provides a Pytorch Lightning-like low-level API that offers maximum flexibility when needed.
- π Compatible: Elegy supports various frameworks and data sources including Flax & Haiku Modules, Optax Optimizers, TensorFlow Datasets, Pytorch DataLoaders, and more.
Elegy is built on top of Treex and Treeo and reexports their APIs for convenience.
Getting Started | Examples | Documentation
- A
Model
class with an Estimator-like API. - A
callbacks
module with common Keras callbacks.
From Treex
- A
Module
class. - A
nn
module for with common layers. - A
losses
module with common loss functions. - A
metrics
module with common metrics.
Install using pip:
pip install elegy
For Windows users, we recommend the Windows subsystem for Linux 2 WSL2 since jax does not support it yet.
Elegy's high-level API provides a straightforward interface you can use by implementing the following steps:
1. Define the architecture inside a Module
:
import jax
import elegy as eg
class MLP(eg.Module):
@eg.compact
def __call__(self, x):
x = eg.Linear(300)(x)
x = jax.nn.relu(x)
x = eg.Linear(10)(x)
return x
2. Create a Model
from this module and specify additional things like losses, metrics, and optimizers:
import optax optax
import elegy as eg
model = eg.Model(
module=MLP(),
loss=[
eg.losses.Crossentropy(),
eg.regularizers.L2(l=1e-5),
],
metrics=eg.metrics.Accuracy(),
optimizer=optax.rmsprop(1e-3),
)
3. Train the model using the fit
method:
model.fit(
inputs=X_train,
labels=y_train,
epochs=100,
steps_per_epoch=200,
batch_size=64,
validation_data=(X_test, y_test),
shuffle=True,
callbacks=[eg.callbacks.TensorBoard("summaries")]
)
Show
To use Flax with Elegy just create a flax.linen.Module
and pass it to Model
.
import jax
import elegy as eg
import optax optax
import flax.linen as nn
class MLP(nn.Module):
@nn.compact
def __call__(self, x, training: bool):
x = nn.Dense(300)(x)
x = jax.nn.relu(x)
x = nn.Dense(10)(x)
return x
model = eg.Model(
module=MLP(),
loss=[
eg.losses.Crossentropy(),
eg.regularizers.L2(l=1e-5),
],
metrics=eg.metrics.Accuracy(),
optimizer=optax.rmsprop(1e-3),
)
As shown here, Flax Modules can optionally request a training
argument to __call__
which will be provided by Elegy / Treex.
Show
To use Haiku with Elegy do the following:
- Create a
forward
function. - Create a
TransformedWithState
object by feedingforward
tohk.transform_with_state
. - Pass your
TransformedWithState
toModel
.
You can also optionally create your own hk.Module
and use it in forward
if needed. Putting everything together should look like this:
import jax
import elegy as eg
import optax optax
import haiku as hk
def forward(x, training: bool):
x = hk.Linear(300)(x)
x = jax.nn.relu(x)
x = hk.Linear(10)(x)
return x
model = eg.Model(
module=hk.transform_with_state(forward),
loss=[
eg.losses.Crossentropy(),
eg.regularizers.L2(l=1e-5),
],
metrics=eg.metrics.Accuracy(),
optimizer=optax.rmsprop(1e-3),
)
As shown here, forward
can optionally request a training
argument which will be provided by Elegy / Treex.
Elegy's low-level API lets you explicitly define what goes on during training, testing, and inference. Let's define our own custom Model
to implement a LinearClassifier
with pure JAX:
1. Define a custom init_step
method:
class LinearClassifier(eg.Model):
# use treex's API to declare parameter nodes
w: jnp.ndarray = eg.Parameter.node()
b: jnp.ndarray = eg.Parameter.node()
def init_step(self, key: jnp.ndarray, inputs: jnp.ndarray):
self.w = jax.random.uniform(
key=key,
shape=[features_in, 10],
)
self.b = jnp.zeros([10])
self.optimizer = self.optimizer.init(self)
return self
Here we declared the parameters w
and b
using Treex's Parameter.node()
for pedagogical reasons, however normally you don't have to do this since you typically use a sub-Module
instead.
2. Define a custom test_step
method:
def test_step(self, inputs, labels):
# flatten + scale
inputs = jnp.reshape(inputs, (inputs.shape[0], -1)) / 255
# forward
logits = jnp.dot(inputs, self.w) + self.b
# crossentropy loss
target = jax.nn.one_hot(labels["target"], 10)
loss = optax.softmax_cross_entropy(logits, target).mean()
# metrics
logs = dict(
acc=jnp.mean(jnp.argmax(logits, axis=-1) == labels["target"]),
loss=loss,
)
return loss, logs, self
3. Instantiate our LinearClassifier
with an optimizer:
model = LinearClassifier(
optimizer=optax.rmsprop(1e-3),
)
4. Train the model using the fit
method:
model.fit(
inputs=X_train,
labels=y_train,
epochs=100,
steps_per_epoch=200,
batch_size=64,
validation_data=(X_test, y_test),
shuffle=True,
callbacks=[eg.callbacks.TensorBoard("summaries")]
)
Show
It is straightforward to integrate other functional JAX libraries with this low-level API, here is an example with Flax:
import elegy as eg
import flax.linen as nn
class LinearClassifier(eg.Model):
params: Mapping[str, Any] = eg.Parameter.node()
batch_stats: Mapping[str, Any] = eg.BatchStat.node()
next_key: eg.KeySeq
def __init__(self, module: nn.Module, **kwargs):
self.flax_module = module
super().__init__(**kwargs)
def init_step(self, key, inputs):
self.next_key = eg.KeySeq(key)
variables = self.flax_module.init(
{"params": self.next_key(), "dropout": self.next_key()}, x
)
self.params = variables["params"]
self.batch_stats = variables["batch_stats"]
self.optimizer = self.optimizer.init(self.parameters())
def test_step(self, inputs, labels):
# forward
variables = dict(
params=self.params,
batch_stats=self.batch_stats,
)
logits, variables = self.flax_module.apply(
variables,
inputs,
rngs={"dropout": self.next_key()},
mutable=True,
)
self.batch_stats = variables["batch_stats"]
# loss
target = jax.nn.one_hot(labels["target"], 10)
loss = optax.softmax_cross_entropy(logits, target).mean()
# logs
logs = dict(
accuracy=accuracy,
loss=loss,
)
return loss, logs, self
Check out the /example directory for some inspiration. To run an example, first install some requirements:
pip install -r examples/requirements.txt
And the run it normally with python e.g.
python examples/flax/mnist_vae.py
If your are interested in helping improve Elegy check out the Contributing Guide.
- Quansight - paid development time
BibTeX
@software{elegy2020repository,
title = {Elegy: A High Level API for Deep Learning in JAX},
author = {PoetsAI},
year = 2021,
url = {https://github.com/poets-ai/elegy},
version = {0.8.1}
}