Skip to content
/ udvd Public
forked from sreyas-mohan/udvd

Unsupervised Deep Video Denoising, ICCV 2021

License

Notifications You must be signed in to change notification settings

ppsdk/udvd

 
 

Repository files navigation

PWC PWC PWC

Unsupervised Deep Video Denoising

To appear at IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Authors: Dev Yashpal Sheth*, Sreyas Mohan*, Joshua Vincent, Ramon Manzorro, Peter A. Crozier, Mitesh M. Khapra, Eero P. Simoncelli and Carlos Fernandez-Granda [* - Equal Contribution].

Paper: arXiv:2011.15045

Website: https://sreyas-mohan.github.io/udvd/

Pre-trained Models

The pretrained folder contains the saved models, details about each are listed below.

  1. blind_video_net.pt - UDVD trained on the DAVIS dataset and Gaussian noise with sigma = 30.
  2. blind_spot_net.pt - UDVD (1 frame) which is simply a unsupervised deep image denoiser.
  3. fast_dvd_net.pth - Pretrained FastDVDnet model taken directly from https://github.com/m-tassano/fastdvdnet.
  4. fluoro_micro.pt - UDVD trained on the Fluorescence Microscopy dataset.
  5. raw_video.pt - UDVD trained on the test set of the Raw Video dataset.
  6. single_video_Set8_rafting_30.pt - UDVD-S trained on a single noisy video sequence rafting from the GoPro set with Gaussian noise sigma = 30. Similarly pretrained models for the other 3 seqeunces in the GoPro set have also been released i.e. hypersmooth, motorbike, snowboard.
  7. mf2f_online_with_teacher_rafting_30.pth - MF2F model which is a fine-tuned FastDVDnet directly on the test sequence rafting from the GoPro set with Gaussian noise sigma = 30. We used the official implementation at https://github.com/centreborelli/mf2f.

Jupyter Notebook Demos

We provide the following demos in the notebook_demos folder.

  1. denoising_demo.ipynb - Basic usage of pretrained models on courrupted videos.
  2. evaluation_demo.ipynb - Evaluation of UDVD on the Set8 dataset and UDVD-S on rafting from the GoPro set with Gaussian noise sigma = 30.
  3. analysis_demo.ipynb - Video denoising as spatiotemporal adaptive filtering and implicit motion compensation.
  4. microscopy_demo.ipynb - UDVD demo on the Fluorescence Microscopy dataset.
  5. raw_video_demo.ipynb - UDVD demo on the Raw Video dataset.

Datasets

We use the following datasets as part of our paper. Download links to each has been listed below. Note that the Set8 dataset consists of 4 sequences of the GoPro set and 4 sequences of the Derfs set. Please refer to the supplementary material in the paper for details on the exact sequences used.

  1. DAVIS - Primairy dataset on which the natural videos model was trained. https://davischallenge.org/davis2017/code.html
  2. GoPro - Released with the FastDVDnet paper. https://github.com/m-tassano/fastdvdnet
  3. Derfs - Contains 4 sequences of the Set8 set and 3 more were used to compare with MF2F. https://media.xiph.org/video/derf/
  4. Vid3oC - Part of the AIM 2020 Video Extreme Super-Resolution Challenge. https://competitions.codalab.org/competitions/24685
  5. CTC - Fluorescence Microscopy dataset. http://celltrackingchallenge.net/2d-datasets/
  6. RawVideo - Released as part of the RViDeNet paper. https://github.com/cao-cong/RViDeNet

Training

To train UDVD on the DAVIS dataset.

python train.py \
        --model blind-video-net-4
        --data-path dataset/DAVIS
        --dataset DAVIS
        --batch-size 32
        --lr 1e-4
        --num-epochs 40

To train UDVD-S on the rafting sequence from the GoPro set with Gaussian noise sigma = 30.

python single_train.py \
        --model blind-video-net-4
        --data-path dataset/Set8
        --dataset SingleVideo
        --dataset-aux GoPro
        --video rafting
        --aug 2
        --sample
        --heldout
        --batch-size 8
        --lr 1e-4
        --num-epochs 32
        --step-checkpoints

To train UDVD on the Fluorescence Microscopy dataset.

python fluoro_train.py \
        --model blind-video-net-4
        --channels 1
        --out-channels 1
        --loss mse
        --data-path datasets/CTC
        --dataset CTC
        --batch-size 32
        --lr 1e-4
        --num-epochs 40
        --step-checkpoints

To train UDVD on the Raw Video dataset.

python raw_train.py \
        --model blind-video-net-4
        --channels 1
        --out-channels 1
        --loss mse
        --data-path datasets/RawVideo
        --dataset RawVideo
        --batch-size 8
        --lr 1e-4
        --num-epochs 4
        --step-checkpoints

Citation

@InProceedings{Sheth_2021_ICCV,
    author = {Sheth, Dev Yashpal and Mohan, Sreyas and Vincent, Joshua and Manzorro, Ramon and Crozier, Peter A. and Khapra, Mitesh M. and Simoncelli, Eero P. and Fernandez-Granda, Carlos},
    title = {Unsupervised Deep Video Denoising},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month = {October},
    year = {2021}
}

About

Unsupervised Deep Video Denoising, ICCV 2021

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.6%
  • Python 2.4%