Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DataPipe] key renamer #402

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 44 additions & 0 deletions test/test_iterdatapipe.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
MapKeyZipper,
MaxTokenBucketizer,
ParagraphAggregator,
RenameKeys,
Repeater,
Rows2Columnar,
SampleMultiplexer,
Expand Down Expand Up @@ -951,6 +952,49 @@ def test_mux_longest_iterdatapipe(self):
with self.assertRaises(TypeError):
len(output_dp)

def test_renamer(self):

# Functional Test: verify that renaming by patterns yields correct output
stage1 = IterableWrapper([
{"1.txt": "1", "1.bin": "1b"},
{"2.txt": "2", "2.bin": "2b"},
])
stage2 = stage1.rename_keys(("t", "*.txt"), ("b", "*.bin"))
output = list(iter(stage2))
self.assertEqual(output, [
{"t": "1", "b": "1b"},
{"t": "2", "b": "2b"},
])

# Functional Test: verify that renaming by patterns yields correct output
stage2 = stage1.rename_keys(t="*.txt", b="*.bin")
output = list(iter(stage2))
self.assertEqual(output, [
{"t": "1", "b": "1b"},
{"t": "2", "b": "2b"},
])

# Functional test: verify that must_match raises a ValueError
with self.assertRaisesRegex(ValueError, r"Not all patterns"):
stage2 = stage1.rename_keys(t="*.txt", b="*.bin", c="*.csv", must_match=True)
output = list(iter(stage2))

# Functional test: verify that duplicate_is_error raises a ValueError
with self.assertRaisesRegex(ValueError, r"Duplicate value"):
stage2 = stage1.rename_keys(("t", "*.txt"), ("t", "*.bin"), duplicate_is_error=True)
output = list(iter(stage2))

# Functional test: verify more complex glob patterns
dp = IterableWrapper([
{"/a/b.input.jpg": b"data1", "/a/b.target.jpg": b"data2"},
{"/a/b.input.png": b"data1", "/a/b.target.png": b"data2"},
]).rename_keys(input="*.input.*", target="*.target.*")
self.assertEqual(list(dp), [
{'input': b'data1', 'target': b'data2'},
{'input': b'data1', 'target': b'data2'}
])


Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please test other boolean flags.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

def test_zip_longest_iterdatapipe(self):

# Functional Test: raises TypeError when an input is not of type `IterDataPipe`
Expand Down
8 changes: 7 additions & 1 deletion torchdata/datapipes/iter/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,12 @@
TFRecordLoaderIterDataPipe as TFRecordLoader,
)
from torchdata.datapipes.iter.util.unzipper import UnZipperIterDataPipe as UnZipper
from torchdata.datapipes.iter.util.webdataset import WebDatasetIterDataPipe as WebDataset
from torchdata.datapipes.iter.util.webdataset import (
WebDatasetIterDataPipe as WebDataset,
)
from torchdata.datapipes.iter.util.renamekeys import (
KeyRenamerIterDataPipe as RenameKeys,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
KeyRenamerIterDataPipe as RenameKeys,
KeyRenamerIterDataPipe as KeyRenamer,

)
from torchdata.datapipes.iter.util.xzfileloader import (
XzFileLoaderIterDataPipe as XzFileLoader,
XzFileReaderIterDataPipe as XzFileReader,
Expand Down Expand Up @@ -192,6 +197,7 @@
"ParquetDataFrameLoader",
"RandomSplitter",
"RarArchiveLoader",
"RenameKeys",
"Repeater",
"RoutedDecoder",
"Rows2Columnar",
Expand Down
93 changes: 93 additions & 0 deletions torchdata/datapipes/iter/util/renamekeys.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import re
from fnmatch import fnmatch
from typing import Dict, Iterator, List, Union, Any

from torchdata.datapipes import functional_datapipe
from torchdata.datapipes.iter import IterDataPipe


@functional_datapipe("rename_keys")
class KeyRenamerIterDataPipe(IterDataPipe[Dict]):
r"""
Given a stream of dictionaries, rename keys using glob patterns.

This is used for quickly extracting relevant fields from a stream of dictionaries
and renaming them to a common format.

Note that if keys contain slashes, only the part after the last slash is matched.

Args:
source_datapipe: a DataPipe yielding a stream of dictionaries.
keep_unselected: keep keys/value pairs even if they don't match any pattern (False)
must_match: all key value pairs must match (True)
duplicate_is_error: it is an error if two renamings yield the same key (True)
Comment on lines +27 to +29
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: Should we move these after *args?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
duplicate_is_error: it is an error if two renamings yield the same key (True)
duplicate_is_error: it is an error if two renamings yield the same key (True); otherwise the first matched one will be returned

*args: `(renamed, pattern)` pairs
**kw: `renamed=pattern` pairs

Returns:
a DataPipe yielding a stream of dictionaries.

Examples:
>>> dp = IterableWrapper([{"/a/b.jpg": b"data"}]).rename_keys(("image", "*.jpg"))
>>> list(dp)
[{'image': b'data'}]
>>> dp = IterableWrapper([
{"/a/b.input.jpg": b"data1", "/a/b.target.jpg": b"data2"},
{"/a/b.input.png": b"data1", "/a/b.target.png": b"data2"},
]).rename_keys(input="*.input.*", output="*.target.*")
>>> list(dp)
[{'input': b'data1', 'target': b'data2'}, {'input': b'data1', 'target': b'data2'}]
"""

def __init__(
self,
source_datapipe: IterDataPipe[Dict[Any, Any]],
*args,
keep_unselected=False,
must_match=True,
duplicate_is_error=True,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
duplicate_is_error=True,
allow_duplicate=False,

nit: might be a better name but feel free to ignore

**kw,
) -> None:
super().__init__()
assert not (keep_unselected and must_match)
self.source_datapipe: IterDataPipe[List[Union[Dict, List]]] = source_datapipe
tmbdev marked this conversation as resolved.
Show resolved Hide resolved
self.must_match = must_match
self.keep_unselected = keep_unselected
self.duplicate_is_error = duplicate_is_error
self.renamings = [(pattern, output) for output, pattern in args]
self.renamings += [(pattern, output) for output, pattern in kw.items()]

def __iter__(self) -> Iterator[Dict]:
for sample in self.source_datapipe:
new_sample = {}
matched = {k: False for k, _ in self.renamings}
for path, value in sample.items():
fname = re.sub(r".*/", "", path)
tmbdev marked this conversation as resolved.
Show resolved Hide resolved
new_name = None
for pattern, name in self.renamings[::-1]:
if fnmatch(fname.lower(), pattern):
matched[pattern] = True
new_name = name
break
if new_name is None:
if self.keep_unselected:
new_sample[path] = value
continue
if new_name in new_sample:
if self.duplicate_is_error:
raise ValueError(f"Duplicate value in sample {sample.keys()} after rename.")
continue
new_sample[new_name] = value
if self.must_match and not all(matched.values()):
raise ValueError(f"Not all patterns ({matched}) matched sample keys ({sample.keys()}).")

yield new_sample

def __len__(self) -> int:
return len(self.source_datapipe)