Implementation of supervised semantic keypoint extraction.
- torch-points3d: for the pointnet model
- pot pourri: for heat distance ->
pip install potpourri3d
- open3d: for data loading / data visualization
- pytorch3d: (better data loading?)
To try an inference, run the following script:
python test.py
- copy the annotation files in the
annotations
folder - copy the ply files in the
cloud
folder - precompute the geodesic distance to the annotation
python process_labels.py
The data folder has the following structure:
project
└───data
│
└───clouds
| │ file111.ply
| │ file112.ply
| │ ...
│
└───preprocessed_data
| │ file111.npz
| │ file112.npz
| │ ...
│
└───annotations
│ file111.csv
│ file112.csv
│ ...
If you are using our system in your research, consider citing our paper.
@inproceedings{falque2023semantic,
title={Semantic keypoint extraction for scanned animals using multi-depth-camera systems},
author={Falque, Raphael and Vidal-Calleja, Teresa and Alempijevic, Alen},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
pages={11794--11801},
year={2023},
organization={IEEE}
}