A Python package for data-mining the QM9 dataset
- Ensure you have the following dependencies installed:
numpy
pandas
scipy
matplotlib
pip3 install numpy pandas scipy matplotlib
- If you want to convert a SMILES string to an SVG image, also install:
rdkit
pip3 install qm9pack
Clone the repository and install the package:
git clone git@github.com:raghurama123/qm9pack.git
cd qm9pack
python3 -m pip install -e .
Click the image below for a PDF the latest version of the tutorial.
All the Python codes used in the tutorial are in the tutorials folder. The codes are named according to the section/subsection in the tutorial.
ramakrishnan@tifrh.res.in
raghu.rama.chem@gmail.com
If you find this module useful and have used it in your work, please cite it as
QM9PACK: A Python package for data-mining the QM9 dataset
Raghunathan Ramakrishnan
https://github.com/raghurama123/qm9pack
@misc{qm9pack,
title = {QM9PACK: A Python package for data-mining the QM9 dataset},
author = {Ramakrishnan, Raghunathan},
year = {2024},
url = {https://github.com/raghurama123/qm9pack}
}
Additionally, please also cite the QM9 study
Quantum chemistry structures and properties of 134 kilo molecules
Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, O. Anatole von Lilienfeld
Scientific Data volume 1, Article number: 140022 (2014)
@article{ramakrishnan2014quantum,
title={Quantum chemistry structures and properties of 134 kilo molecules},
author={Ramakrishnan, Raghunathan and Dral, Pavlo O and Rupp, Matthias and Von Lilienfeld, O Anatole},
journal={Scientific data},
volume={1},
number={1},
pages={1--7},
year={2014},
publisher={Nature Publishing Group},
url={https://doi.org/10.1038/sdata.2014.22}
}