Port of awesome Node.js library - xml-crypto - in Dart.
An xml digital signature library for Dart.
Install:
dart pub add xml_crypto
- Canonicalization http://www.w3.org/TR/2001/REC-xml-c14n-20010315
- Canonicalization with comments http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
- Exclusive Canonicalization http://www.w3.org/2001/10/xml-exc-c14n#
- Exclusive Canonicalization with comments http://www.w3.org/2001/10/xml-exc-c14n#WithComments
- Enveloped Signature transform http://www.w3.org/2000/09/xmldsig#enveloped-signature
- SHA1 digests http://www.w3.org/2000/09/xmldsig#sha1
- SHA256 digests http://www.w3.org/2001/04/xmlenc#sha256
- SHA512 digests http://www.w3.org/2001/04/xmlenc#sha512
- RSA-SHA1 http://www.w3.org/2000/09/xmldsig#rsa-sha1
- RSA-SHA256 http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
- RSA-SHA512 http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
HMAC-SHA1 is also available but it is disabled by default
to enable HMAC-SHA1, do:
import 'package:xml_crypto/xml_crypto.dart';
SignedXml.enableHMAC();
This will enable HMAC and disable digital signature algorithms. Due to key confusion issues, it is risky to have both HMAC-based and public key digital signature algorithms enabled at same time.
by default the following algorithms are used:
Canonicalization/Transformation Algorithm: Exclusive Canonicalization http://www.w3.org/2001/10/xml-exc-c14n#
Hashing Algorithm: SHA1 digest http://www.w3.org/2000/09/xmldsig#sha1
Signature Algorithm: RSA-SHA1 http://www.w3.org/2000/09/xmldsig#rsa-sha1
You are able to extend xml-crypto with custom algorithms.
When signing a xml document you can specify the following properties on a SignedXml
instance to customize the signature process:
sign.signingKey
- [required] aUint8List
containing your private keysign.keyInfoProvider
- [optional] a key info provider instance, see customizing algorithms for an implementation examplesign.signatureAlgorithm
- [optional] one of the supported signature algorithms. Ex:sign.signatureAlgorithm = "http://www.w3.org/2001/04/xmldsig-more#rsa-sha256";
sign.canonicalizationAlgorithm
- [optional] one of the supported canonicalization algorithms. Ex:sign.canonicalizationAlgorithm = "http://www.w3.org/2001/10/xml-exc-c14n#WithComments";
Use this code:
import 'dart:io';
import 'package:xml_crypto/xml_crypto.dart';
final xml = "<library>"
"<book>"
"<name>Harry Potter</name>"
"</book>"
"</library>";
final sig = SignedXml()
..addReference("//*[local-name()='book']")
..signingKey = File("client.pem").readAsBytesSync()
..computeSignature(xml);
File("signed.xml").writeAsStringSync(sig.signedXml);
The result will be:
<library>
<book Id="_0">
<name>Harry Potter</name>
</book>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
<Reference URI="#_0">
<Transforms>
<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>cdiS43aFDQMnb3X8yaIUej3+z9Q=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>vhWzpQyIYuncHUZV9W...[long base64 removed]...</SignatureValue>
</Signature>
</library>
Note:
To generate a <X509Data></X509Data>
element in the signature you must provide a key info implementation, see customizing algorithms for an example.
When verifying a xml document you must specify the following properties on a SignedXml
instance:
sign.keyInfoProvider
- [required] a key info provider instance containing your certificate, see customizing algorithms for an implementation example
You can use any dom parser you want in your code (or none, depending on your usage). This sample uses xml so you should install it first:
dart pub add xml
Example:
import 'dart:io';
import 'package:xml_crypto/xml_crypto.dart';
final xml = File("signed.xml").readAsStringSync()
var doc = new dom().parseFromString(xml)
var signature = select(doc, "//*[local-name(.)='Signature' and namespace-uri(.)='http://www.w3.org/2000/09/xmldsig#']")[0]
final sig = SignedXml()
..keyInfoProvider = FileKeyInfo("client_public.pem")
..loadSignature(signature);
final res = sig.checkSignature(xml);
if (!res) print(sig.validationErrors);
if the verification process fails sig.validationErrors
will have the errors.
In order to protect from some attacks we must check the content we want to use is the one that has been signed:
final elem = select(doc, "/xpath_to_interesting_element");
final uri = sig.references[0].uri; // might not be 0 - depending on the document you verify
final id = (uri[0] == '#') ? uri.substring(1) : uri;
if (elem.getAttribute('ID') != id && elem.getAttribute('Id') != id && elem.getAttribute('id') != id)
throw Error('the interesting element was not the one verified by the signature');
Note:
The xml-crypto api requires you to supply it separately the xml signature ("<Signature>...</Signature>", in loadSignature) and the signed xml (in checkSignature). The signed xml may or may not contain the signature in it, but you are still required to supply the signature separately.
If you fail to verify signed XML, then one possible cause is that there are some hidden implicit transforms(#).
(#) Normalizing XML document to be verified. i.e. remove extra space within a tag, sorting attributes, importing namespace declared in ancestor nodes, etc.
The reason for these implicit transform might come from complex xml signature specification, which makes XML developers confused and then leads to incorrect implementation for signing XML document.
If you keep failing verification, it is worth trying to guess such a hidden transform and specify it to the option as below:
final option = {
'implicitTransforms': ['http://www.w3.org/TR/2001/REC-xml-c14n-20010315']};
final sig = SignedXml('', option)
..keyInfoProvider = FileKeyInfo("client_public.pem")
..loadSignature(signature);
final res = sig.checkSignature(xml);
You might find it difficult to guess such transforms, but there are typical transforms you can try.
- http://www.w3.org/TR/2001/REC-xml-c14n-20010315
- http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
- http://www.w3.org/2001/10/xml-exc-c14n#
- http://www.w3.org/2001/10/xml-exc-c14n#WithComments
The SignedXml
constructor provides an abstraction for sign and verify xml documents. The object is constructed using new SignedXml([String idMode])
where:
idMode
- if the value of"wssecurity"
is passed it will create/validate id's with the ws-security namespace.
API
A SignedXml
object provides the following methods:
To sign xml documents:
void addReference(String? xpath, [List<String>? transforms, String? digestAlgorithm])
- adds a reference to a xml element where:xpath
- a string containing a XPath expression referencing a xml elementtransforms
- an array of transform algorithms, the referenced element will be transformed for each value in the arraydigestAlgorithm
- one of the supported hashing algorithms
void computeSignature(String xml, {Map<String, dynamic>? options})
- compute the signature of the given xml where:xml
- a string containing a xml documentoptions
- a map with the following properties:prefix
- adds this value as a prefix for the generated signature tagsattrs
- a hash of attributes and valuesattrName: value
to add to the signature root nodelocation
- customize the location of the signature, pass an object with areference
key which should contain a XPath expression to a reference node, anaction
key which should contain one of the following values:append
,prepend
,before
,after
existingPrefixes
- A hash of prefixes and namespacesprefix: namespace
that shouldn't be in the signature because they already exist in the xml
String get signedXml
- returns the original xml document with the signature in it, must be called only aftercomputeSignature
String get signatureXml
- returns just the signature part, must be called only aftercomputeSignature
String get originalXmlWithIds
- returns the original xml with Id attributes added on relevant elements (required for validation), must be called only aftercomputeSignature
To verify xml documents:
void loadSignature(dynamic signatureXml)
- loads the signature where:signatureXml
- a string orXmlNode
object (xml) containing the xml representation of the signature
bool checkSignature(String xml)
- validates the given xml document and returns true if the validation was successful,sig.validationErrors
will have the validation errors if any, where:xml
- a string containing a xml document
A basic key info provider implementation using File(file).readAsBytesSync()
, is constructed using new FileKeyInfo([file])
where:
file
- a path to a pem encoded certificate
See verifying xml documents for an example usage
The following sample shows how to sign a message using custom algorithms.
First import some modules:
import 'package:xml_crypto/xml_crypto.dart';
Now define the extension point you want to implement. You can choose one or more.
A key info provider is used to extract and construct the key and the KeyInfo xml section. Implement it if you want to create a signature with a KeyInfo section, or you want to read your key in a different way then the default file read option.
class MyKeyInfo implements KeyInfoProvider {
@override
String getKeyInfo(Uint8List? signingKey, String? prefix) {
prefix = prefix ?? '';
prefix = prefix.isNotEmpty ? prefix + ':' : prefix;
return '<' + prefix + "X509Data></" + prefix + 'X509Data>';
}
@override
//you can use the keyInfo parameter to extract the key in any way you want
Uint8List? getKey(String? keyInfo) => File("key.pem").readAsBytesSync();
}
A custom hash algorithm is used to calculate digests. Implement it if you want a hash other than the default SHA1.
class MyDigest implements HashAlgorithm {
@override
String getHash(String xml) => 'the base64 hash representation of the given xml string'
@override
String get algorithmName => 'http://myDigestAlgorithm';
}
A custom signing algorithm. The default is RSA-SHA1
class MySignatureAlgorithm implements SignatureAlgorithm {
/*sign the given SignedInfo using the key. return base64 signature value*/
@override
String getSignature(String xml, Uint8List signingKey, [CalculateSignatureCallback? callback])
=> 'signature of signedInfo as base64...';
@override
bool verifySignature(String xml, Uint8List key, String signatureValue, [ValidateSignatureCallback? callback])
=> true;
@override
String get algorithmName => 'http://mySigningAlgorithm';
}
Custom transformation algorithm. The default is exclusive canonicalization.
class MyTransformation implements CanonicalizationAlgorithm<String> {
/*given a node (from the xml module) return its canonical representation (as string)*/
@override
String process(XmlNode node, [Map<String, dynamic> options = const {}]) {
//you should apply your transformation before returning
return node.toString();
}
@override
String get algorithmName => 'http://myTransformation';
}
Custom canonicalization is actually the same as custom transformation. It is applied on the SignedInfo rather than on references.
class MyCanonicalization implements CanonicalizationAlgorithm<String> {
/*given a node (from the xml module) return its canonical representation (as string)*/
@override
String process(XmlNode node, [Map<String, dynamic> options = const {}]) {
//you should apply your transformation before returning
return '< x/>';
}
@override
String get algorithmName => 'http://myCanonicalization';
}
Now you need to register the new algorithms:
/*register all the custom algorithms*/
SignedXml.canonicalizationAlgorithms["http://MyTransformation"] = MyTransformation();
SignedXml.canonicalizationAlgorithms["http://MyCanonicalization"] = MyCanonicalization();
SignedXml.cashAlgorithms["http://myDigestAlgorithm"] = MyDigest();
SignedXml.signatureAlgorithms["http://mySigningAlgorithm"] = MySignatureAlgorithm();
Now do the signing. Note how we configure the signature to use the above algorithms:
void signXml(String xml, String xpath, String key, String dest) {
final sig = SignedXml();
/*configure the signature object to use the custom algorithms*/
sig.signatureAlgorithm = "http://mySignatureAlgorithm";
sig.keyInfoProvider = MyKeyInfo();
sig.canonicalizationAlgorithm = "http://MyCanonicalization";
sig.addReference("//*[local-name()='x']", ["http://MyTransformation"], "http://myDigestAlgorithm");
sig.signingKey = File(key).readAsBytesSync();
sig.addReference(xpath);
sig.computeSignature(xml);
File(dest).writeAsStringSync(sig.signedXml);
}
void main() {
var xml = "<library>"
"<book>"
"<name>Harry Potter</name>"
"</book>"
"</library>";
signXml(xml,
"//*[local-name()='book']",
"client.pem",
"result.xml");
}
You can always look at the actual code as a sample (or drop me a mail).
If the private key is not stored locally and you wish to use a signing server or Hardware Security Module (HSM) to sign documents you can create a custom signing algorithm that uses an asynchronous callback.
class AsyncSignatureAlgorithm implements SignatureAlgorithm {
@override
String getSignature(String xml, Uint8List signingKey, [CalculateSignatureCallback? callback]) {
final rsa = RSAPrivateKey.fromPEM(utf8.decode(signingKey));
final res = rsa.signSsaPkcs1v15ToBase64(utf8.encode(xml), hasher: EmsaHasher.sha1);
//Do some asynchronous things here
callback?.call(null, res);
return '';
}
@override
bool verifySignature(String xml, Uint8List key, String signatureValue, [ValidateSignatureCallback? callback]) => true;
@override
String get algorithmName => 'http://www.w3.org/2000/09/xmldsig#rsa-sha1';
}
SignedXml.signatureAlgorithms["http://asyncSignatureAlgorithm"] = AsyncSignatureAlgorithm();
final sig = SignedXml();
sig.signatureAlgorithm = "http://asyncSignatureAlgorithm";
sig.computeSignature(xml, opts: opts, callback: (err, _) {
final signedResponse = sig.signedXml;
});
The function sig.checkSignature
may also use a callback if asynchronous verification is needed.
PEM encoded certificates are supported. So to sign an xml use key.pem that looks like this (only the begining of the key content is shown):
-----BEGIN PRIVATE KEY-----
MIICdwIBADANBgkqhkiG9w0...
-----END PRIVATE KEY-----
And for verification use key_public.pem:
-----BEGIN CERTIFICATE-----
MIIBxDCCAW6gAwIBAgIQxUSX...
-----END CERTIFICATE-----
Converting .pfx certificates to pem
If you have .pfx certificates you can convert them to .pem using openssl:
openssl pkcs12 -in yourcert.pfx -out cag.pem
Then you could use the result as is for the purpose of signing. For the purpose of validation open the resulting .pem with a text editor and copy from -----BEGIN CERTIFICATE----- to -----END CERTIFICATE----- (including) to a new text file and save it as .pem.
- how to sign a root node coming soon
Use the prefix
option when calling computeSignature
to add a prefix to the signature.
import 'dart:io';
import 'package:xml_crypto/xml_crypto.dart';
final xml = "<library>"
"<book>"
"<name>Harry Potter</name>"
"</book>"
"</library>";
final sig = SignedXml();
sig.addReference("//*[local-name()='book']");
sig.signingKey = File("client.pem").readAsBytesSync();
sig.computeSignature(xml, opts: {
'prefix': 'ds'
});
Use the location
option when calling computeSignature
to move the signature around.
Set action
to one of the following:
- append(default) - append to the end of the xml document
- prepend - prepend to the xml document
- before - prepend to a specific node (use the
referenceNode
property) - after - append to specific node (use the
referenceNode
property)
import 'dart:io';
import 'package:xml_crypto/xml_crypto.dart';
final xml = "<library>"
"<book>"
"<name>Harry Potter</name>"
"</book>"
"</library>";
final sig = SignedXml();
sig.addReference("//*[local-name()='book']");
sig.signingKey = File("client.pem").readAsBytesSync();
sig.computeSignature(xml, opts: {
"location": {
"reference": "//*[local-name()='book']",
"action": "after" //This will place the signature after the book element
}
});
more examples coming soon
The test framework is test. To run tests use:
$> dart test
Visit this original author's blog or twitter
This project is licensed under the MIT License. See the LICENSE file for more info.
- Quire - a simple, collaborative, multi-level task management tool.