The scripts to performe PaCS-MD
The current implementation is for local workstation. The parallel version for super computer is under construction.
- Gromacs (2018 or later)
- AmberTools
- Python 3.x
- MDAnalysis
- numpy
- matplotlib (for analysis)
conda install -c conda-forge mdanalysis
Copy the lib directory on the your each working directory.
mkdir protein_X
cd ./protein_X
git clone https://github.com/riquri/PaCS-MD.git
Place the initial and target structure
cp {your_initial_structure.pdb} ./input/initial.pdb
cp {your_target_structure.pdb} ./input/target.pdb
Modify the leap input file (./lib/run_leap.sh)
set mol box {50 50 50 } # Size of the PBC box
Modify the preference file (./lib/preference.sh)
The GMX
and GMX_MPI
is set for the full path for the Gromacs binary.
You can specify scoring script as SCORING_SCRIPT
in ./lib directory.
If you need your original scoring script, place it in the ./lib directory.
nohup ./lib/run_jobs.sh {TRIAL_NAME} &
To restart PaCS-MD,
cd {TRIAL_directory}
nohup ./lib/run_pacs.sh {START_CYCLE(not include the exist cycle)} {LAST_CYCLE} {NUMBER_OF_CANDIDATE=10}
To visualize the progress with score,
cd {TRIAL_directory}
python3 ./lib/plot_score.py
This script draw a plot and save a pdf file.
Please cite this paper.
Ryuhei Harada and Akio Kitao. Parallel cascade selection molecular dynamics (PaCS-MD) to generate conformational transition pathway. J. Chem. Phys. (2021)DOI:[https://doi.org/10.1063/1.4813023]
- Rikuri Morita*, Ryuhei Harada*.
- Center for Computational Sciences, University of Tsukuba
- morita@ccs.tsukuba.ac.jp, ryuhei@ccs.tsukuba.ac.jp
This scripts are under MIT license.