Skip to content

rvanroey/crisprquant

 
 

Repository files navigation

nf-core/crisprquant

GitHub Actions CI Status GitHub Actions Linting Status AWS CI Cite with Zenodo

Nextflow run with conda run with docker run with singularity

Get help on Slack Follow on Twitter Watch on YouTube

Introduction

nf-core/crisprquant is a bioinformatics best-practise analysis pipeline. Analysis pipeline for pooled CRISPR screens.

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker / Singularity containers making installation trivial and results highly reproducible.

On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources. The results obtained from the full-sized test can be viewed on the nf-core website.

Pipeline summary

  1. Read QC (FastQC)
  2. Present QC for raw reads (MultiQC)

Quick Start

  1. Install nextflow

  2. Install any of Docker, Singularity or Podman for full pipeline reproducibility (please only use Conda as a last resort; see docs)

  3. Download the pipeline and test it on a minimal dataset with a single command:

    nextflow run nf-core/crisprquant -profile test,<docker/singularity/podman/conda/institute>
    • Please check nf-core/configs to see if a custom config file to run nf-core pipelines already exists for your Institute. If so, you can simply use -profile <institute> in your command. This will enable either docker or singularity and set the appropriate execution settings for your local compute environment.
    • If you are using singularity then the pipeline will auto-detect this and attempt to download the Singularity images directly as opposed to performing a conversion from Docker images. If you are persistently observing issues downloading Singularity images directly due to timeout or network issues then please use the --singularity_pull_docker_container parameter to pull and convert the Docker image instead. It is also highly recommended to use the NXF_SINGULARITY_CACHEDIR or singularity.cacheDir settings to store the images in a central location for future pipeline runs.
    • If you are using conda, it is highly recommended to use the NXF_CONDA_CACHEDIR or conda.cacheDir settings to store the environments in a central location for future pipeline runs.
  4. Start running your own analysis!

    nextflow run nf-core/crisprquant -profile <docker/singularity/podman/conda/institute> --input samplesheet.csv --genome GRCh37

See usage docs for all of the available options when running the pipeline.

Documentation

The nf-core/crisprquant pipeline comes with documentation about the pipeline: usage and output.

Credits

nf-core/crisprquant was originally written by Daniel Schreyer.

We thank the following people for their extensive assistance in the development of this pipeline:

Contributions and Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #crisprquant channel (you can join with this invite).

Citations

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

You can cite the nf-core publication as follows:

The nf-core framework for community-curated bioinformatics pipelines.

Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.

Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Nextflow 63.7%
  • Groovy 25.2%
  • Python 8.4%
  • HTML 2.7%