Image Super-Resolution for Anime-style art using Deep Convolutional Neural Networks. And it supports photo.
The demo application can be found at http://waifu2x.udp.jp/ .
Note that I only provide this website and this repository. Other software or website claiming "waifu2x" has nothing to do with me.
Also, the current waifu2x.udp.jp is powered by nunif impl.
Click to see the slide show.
waifu2x is inspired by SRCNN [1]. 2D character picture (HatsuneMiku) is licensed under CC BY-NC by piapro [2].
- [1] Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, "Image Super-Resolution Using Deep Convolutional Networks", http://arxiv.org/abs/1501.00092
- [2] "For Creators", http://piapro.net/en_for_creators.html
TODO
If you are a windows user, I recommend you to use waifu2x-caffe(Just download from releases
tab), waifu2x-ncnn-vulkan or waifu2x-conver-cpp.
- NVIDIA GPU
- lua-csnappy
- md5
- uuid
- csvigo
- turbo
(on Ubuntu 16.04)
See: NVIDIA CUDA Getting Started Guide for Linux
Download CUDA
sudo dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda
sudo apt-get install libsnappy-dev
sudo apt-get install libgraphicsmagick1-dev
sudo apt-get install libssl1.0-dev # for web server
Note: waifu2x requires little-cms2 linked graphicsmagick. if you use macOS/homebrew, See #174.
See: Getting started with Torch.
git clone --depth 1 https://github.com/nagadomi/waifu2x.git
and install lua modules.
cd waifu2x
./install_lua_modules.sh
Testing the waifu2x command line tool.
th waifu2x.lua
th web.lua
View at: http://localhost:8812/
Notes: If you have cuDNN library, than you can use cuDNN with -force_cudnn 1
option. cuDNN is too much faster than default kernel. If you got GPU out of memory error, you can avoid it with -crop_size
option (e.g. -crop_size 128
).
th waifu2x.lua -m noise -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 0 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 2 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 3 -i input_image.png -o output_image.png
th waifu2x.lua -m scale -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 0 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 2 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 3 -i input_image.png -o output_image.png
find /path/to/imagedir -name "*.png" -o -name "*.jpg" > image_list.txt
th waifu2x.lua -m scale -l ./image_list.txt -o /path/to/outputdir/prefix_%d.png
The output format supports %s
and %d
(e.g. %06d). %s
will be replaced the basename of the source filename. %d
will be replaced a sequence number.
For example, when input filename is piyo.png
, %s_%03d.png
will be replaced piyo_001.png
.
See also th waifu2x.lua -h
.
Please add -model_dir models/photo
to command line option, if you want to use photo model.
For example,
th waifu2x.lua -model_dir models/photo -m scale -i input_image.png -o output_image.png
* avconv
is alias of ffmpeg
on Ubuntu 14.04.
Extracting images and audio from a video. (range: 00:09:00 ~ 00:12:00)
mkdir frames
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 -r 24 -f image2 frames/%06d.png
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 audio.mp3
Generating a image list.
find ./frames -name "*.png" |sort > data/frame.txt
waifu2x (for example, noise reduction)
mkdir new_frames
th waifu2x.lua -m noise -noise_level 1 -resume 1 -l data/frame.txt -o new_frames/%d.png
Generating a video from waifu2xed images and audio.
avconv -f image2 -framerate 24 -i new_frames/%d.png -i audio.mp3 -r 24 -vcodec libx264 -crf 16 video.mp4
Note1: If you have cuDNN library, you can use cudnn kernel with -backend cudnn
option. And, you can convert trained cudnn model to cunn model with tools/rebuild.lua
.
Note2: The command that was used to train for waifu2x's pretrained models is available at appendix/train_upconv_7_art.sh
, appendix/train_upconv_7_photo.sh
. Maybe it is helpful.
Genrating a file list.
find /path/to/image/dir -name "*.png" > data/image_list.txt
You should use noise free images. In my case, waifu2x is trained with 6000 high-resolution-noise-free-PNG images.
Converting training data.
th convert_data.lua
mkdir models/my_model
th train.lua -model_dir models/my_model -method noise -noise_level 1 -test images/miku_noisy.png
# usage
th waifu2x.lua -model_dir models/my_model -m noise -noise_level 1 -i images/miku_noisy.png -o output.png
You can check the performance of model with models/my_model/noise1_best.png
.
th train.lua -model_dir models/my_model -method noise -noise_level 2 -test images/miku_noisy.png
# usage
th waifu2x.lua -model_dir models/my_model -m noise -noise_level 2 -i images/miku_noisy.png -o output.png
You can check the performance of model with models/my_model/noise2_best.png
.
th train.lua -model upconv_7 -model_dir models/my_model -method scale -scale 2 -test images/miku_small.png
# usage
th waifu2x.lua -model_dir models/my_model -m scale -scale 2 -i images/miku_small.png -o output.png
You can check the performance of model with models/my_model/scale2.0x_best.png
.
th train.lua -model upconv_7 -model_dir models/my_model -method noise_scale -scale 2 -noise_level 1 -test images/miku_small.png
# usage
th waifu2x.lua -model_dir models/my_model -m noise_scale -scale 2 -noise_level 1 -i images/miku_small.png -o output.png
You can check the performance of model with models/my_model/noise1_scale2.0x_best.png
.
( Docker image is available at https://hub.docker.com/r/nagadomi/waifu2x )
Requires nvidia-docker.
docker build -t waifu2x .
docker run --gpus all -p 8812:8812 waifu2x th web.lua
docker run --gpus all -v `pwd`/images:/images waifu2x th waifu2x.lua -force_cudnn 1 -m scale -scale 2 -i /images/miku_small.png -o /images/output.png
Note that running waifu2x in without JIT caching is very slow, which is what would happen if you use docker.
For a workaround, you can mount a host volume to the CUDA_CACHE_PATH
, for instance,
docker run --gpus all -v $PWD/ComputeCache:/root/.nv/ComputeCache waifu2x th waifu2x.lua --help