Skip to content

Implementation of PAC Confidence Sets for Deep Neural Network (ICLR20)

License

Notifications You must be signed in to change notification settings

sangdon/PAC-confidence-set

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PAC Confidence Sets Construction

Implementation of PAC Confidence Sets for Deep Neural Network (ICLR20). This repository provides code to reproduce results of the paper on the three datasets (i.e., imagenet, mpg, and halfcheetah) for three tasks (i.e., classification, regression, and multi-dimensional regression).

Check the paper for details: https://arxiv.org/abs/2001.00106.

Datasets Initialization

To initialize datasets, excute the following shell scripts for each dataset; each script download a dataset, extract it under <repository root>/demo/conf_set/datasets.

imagenet dataset:

cd <repository root>
./data/setup/init_imagenet.sh

mpg dataset:

cd <repository root>
./data/setup/init_mpg.sh

halfcheetah dataset:

cd <repository root>
./data/setup/init_halfcheetah.sh

Usage

The following includes how to construct a confidence set predictor and how to plot results on confidence set size. The results are saved under <repository root>/demo/conf_set/<dataset name>/snapshots/pac_conf_set. For more usage examples, see <repository root>/demo/conf_set/scripts.

construct a confidence set predictor

To construct a confidence set predictor, execute the following command for each dataset:

imagenet dataset:

cd <repository root>/demo/conf_set
python3 pac_conf_set.py --task cls --dataset.name imagenet --cs.n 20000 --cs.eps 0.01 0.02 0.03 0.04 0.05 --cs.delta 1e-5 1e-3 1e-1 --train_cs

mpg dataset:

python3 pac_conf_set.py --task reg --dataset.name mpg --batch_size 10 --train.lr 0.0005 --cal.lr 1e-2 --cs.n 70 --cs.eps 0.1 0.2 --cs.delta 0.05 0.1 --train_cs

halfcheetah dataset:

python3 pac_conf_set.py --task rl --dataset.name halfcheetah --cs.n 5000 --cs.eps 0.01 0.02 0.03 0.04 0.05 --cs.delta 1e-5 1e-3 1e-1 --train_cs

plot results on confidence set size

To draw the sensitivity analysis results of confidence set size over \epsilon and \delta, excute the following:

imagenet dataset:

cd <repository root>/demo/conf_set
python3 pac_conf_set.py --task cls --dataset.name imagenet --cs.n 20000 --cs.delta 1e-5 --cs.eps 0.01 0.02 0.03 0.04 0.05 --plot.eps
python3 pac_conf_set.py --task cls --dataset.name imagenet --cs.n 20000 --cs.eps 0.01 --cs.delta 1e-5 1e-3 1e-1 --plot.delta

mpg dataset:

cd <repository root>/demo/conf_set
python3 pac_conf_set.py --task reg --dataset.name mpg --cs.n 70 --cs.eps 0.1 0.2 --cs.delta 0.05 --plot.ylim 20.0 50.0 --plot.eps
python3 pac_conf_set.py --task reg --dataset.name mpg --cs.n 70 --cs.eps 0.1 --cs.delta 0.05 0.1 --plot.ylim 40.0 50.0 --plot.delta

halfcheetah dataset:

cd <repository root>/demo/conf_set
python3 pac_conf_set.py --task rl --dataset.name halfcheetah --cs.n 5000 --cs.delta 1e-5 --cs.eps 0.01 0.02 0.03 0.04 0.05 --plot.eps --plot.log_scale --plot.ylim 1.0 1e18
python3 pac_conf_set.py --task rl --dataset.name halfcheetah --cs.n 5000 --cs.eps 0.01 --cs.delta 1e-5 1e-3 1e-1 --plot.delta --plot.log_scale --plot.ylim 1.0 1e18

About

Implementation of PAC Confidence Sets for Deep Neural Network (ICLR20)

Resources

License

Stars

Watchers

Forks

Packages

No packages published