Skip to content

Self-Supervised Learning with Swin UNETR for Segmentation of Organs at Risk and Tumor in PET/CT Images

Notifications You must be signed in to change notification settings

scheshmi/SSL-OARs-Tumor-Segmentation-in-PETCT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SSL-OARs-Tumor-Segmentation-in-PETCT

Self-Supervised Learning with Swin UNETR for Segmentation of Organs at Risk and Tumor in PET/CT Images

Install Dependencies

Install dependencies using

pip install -r requirements.txt

Preprocessing

Before pretraining and fine-tuning, data (PET and CT) should be preprocessed:

python preprocess.py --in_dir=<Input-directory(PET and CT)> --out_dir=<Output-directory>

Pre-Training

Pre-Train Swin UNETR encoder on unlabeled data

python main.py --exp=<Experiment Name> --in_channels=2 --data_dir=<Data-Path> --json_list=<Json List Path> \
--lr=6e-6 --lrdecay --batch_size=<Batch Size> --num_steps=<Number of Steps>

Fine-Tuning

Fine-Tuning Swin UNETR on labeled data

python main.py --exp=<Experiment Name> --data_dir=<Data-Path> --json_list=<Json List Path> --in_channels=2 --out_channels=12 \
--pretrained_model_name=<Pretrained Encoder Name> --batch_size=<Batch Size> --max_epochs=<Epochs> --use_ssl_pretrained \
--ssl_pretrained_path=<Pretrained Model Path> --use_checkpoint

Evaluation

Evaluating Swin UNETR

python test.py --pretrained_dir=<Pretrained Model Path> --data_dir=<Data-Path> --exp_name=<Experiment Name> \
--json_list=<Json List Path> --pretrained_model_name=<Pretrained Model Name> --save 

Acknowledgement

Models implementation and SSL pipeline are based on MONAI and This repositories.

About

Self-Supervised Learning with Swin UNETR for Segmentation of Organs at Risk and Tumor in PET/CT Images

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages