Proof of concept (POC) for a domain expert model:
This model will be trained on a dataset of domain-specific knowledge in finance.
Meta Llama 2 7B foundation model Ver 1.0.0
Chat Optimized, Text Generation, LLAMA 2
Llama 2 is an auto-regressive language model that uses an optimized transformer architecture.
JumpStartModel
(model_id, model_version,) = ("meta-textgeneration-llama-2-7b","2.*",)
JumpStartEstimator
(model_id=model_id, environment={"accept_eula": "true"},instance_type = "ml.g5.2xlarge")
Instance type for training job usage (EC2 instance with GPU for fine-tuning from AWS Service Quotas)
ml.g5.2xlarge
AWS SageMaker IAM Role for ComputeFullAccess
AWS SageMaker Notebook
instance(ml.t3.medium)
platform(Amazon Linux 2, Jupyter Lab 3)
kernel(Python 3.10 Pytorch or Tensorflow)
AWS SageMaker (Python SDK and boto3, JumpStartModel, JumpStartEstimator)
AWS Rekognition
AWS EC2
AWS S3 (s3://genaiwithawsproject2024/training-datasets/finance)
Amazon Bedrock
AWS PartyRock
AWS CodeWhisperer
AWS Cloud9
AWS Service Quotas