Train models using using weak supervision such as image-level labels, producing pixel-level labels for CT scans.
Folder hierarchy of dataset.
--Biomedical_data
--train.py
--predict.py
--train256
--liver
--noliver
--test256
--images_pngs
--masks_pngs
python train.py --image_dir ./train256/
--output_checkpoint ./output_model/checkpoint.ckpt
--batch_size 16
--epochs 10
python predict.py --image_dir ./test256/images_pngs/
--checkpoint_path ./output_model/checkpoint.ckpt
--output_dir ./output_prediction
--sensitivity 130
Learning Deep Features for Discriminative Localization http://cnnlocalization.csail.mit.edu/Zhou_Learning_Deep_Features_CVPR_2016_paper.pdf
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization https://arxiv.org/pdf/1610.02391.pdf