Skip to content

[IROS 2024] Official implementation of paper: DriVLMe: "Enhancing LLM-based Autonomous Driving Agents with Embodied and Social Experience"s

Notifications You must be signed in to change notification settings

sled-group/driVLMe

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DriVLMe: Enhancing LLM-based Autonomous Driving Agents with Embodied and Social Experiences

Yidong Huang, Jacob Sansom, Ziqiao Ma, Felix Gervits, Joyce Chai
University of Michigan, ARL
IROS 2024

Method

Setup

The code is adopted from video-chatgpt. We recommend setting up a conda environment for the project:

conda create --name=drivlme python=3.10
conda activate drivlme

git clone git@github.com:sled-group/driVLMe.git
cd driVLMe
pip install -r requirements.txt
pip install -e .

Prepare Llava weights

Please follow the following instructions to get LLaVA weights.

  • Get the original LLaMA weights in the Hugging Face format by following the instructions here.
  • Use the following scripts to get LLaVA weights by applying our delta.
python scripts/apply_delta.py \ 
        --base-model-path <path to LLaMA 7B weights> \
        --target-model-path LLaVA-Lightning-7B-v1-1 \
        --delta-path liuhaotian/LLaVA-Lightning-7B-delta-v1-1

The above command will download the LLaVA-Lightening-7B-v1-1 delta from Hugging Face, apply it to the provided LLaMA weights and save the LLaVA-Lightening-7B-v1-1 weights in the current directory.

Alternatively you can download the ready LLaVA-Lightening-7B weights from mmaaz60/LLaVA-Lightening-7B-v1-1.

Prepare Dataset

You can get the data at this dowanload link and untar all the file under folder "videos".

Pretrain on bddx dataset

Train on 4 A40 GPUs using the command

torchrun --nproc_per_node=4 --master_port 29001 drivlme/train/train_xformers.py \
          --model_name_or_path  <Path to Llava> \
          --version v1 \
          --data_path datasets/bddx_pretrain.json \
          --video_folder videos/bdd100k_feats \
          --tune_mm_mlp_adapter True \
          --mm_use_vid_start_end \
          --bf16 True \
          --output_dir ./DriVLMe_model_weights/bddx_pretrain_ckpt \
          --num_train_epochs 3 \
          --per_device_train_batch_size 4 \
          --per_device_eval_batch_size 4 \
          --gradient_accumulation_steps 1 \
          --evaluation_strategy "no" \
          --save_strategy "steps" \
          --save_steps 1000 \
          --save_total_limit 3 \
          --learning_rate 2e-5 \
          --weight_decay 0. \
          --warmup_ratio 0.03 \
          --lr_scheduler_type "cosine" \
          --logging_steps 100 \
          --tf32 True \
          --model_max_length 2048 \
          --gradient_checkpointing True \
          --lazy_preprocess True

Finetune on SDN dataset

Train on 4 A40 GPUs with deepspeed zero2 using the command

deepspeed --master_port=29001 drivlme/train/train_xformers.py \
          --deepspeed ./scripts/zero2.json \
          --model_name_or_path  <Path to Llava> \
          --pretrain_mm_mlp_adapter ./DriVLMe_model_weights/bddx_pretrain_ckpt/mm_projector.bin \
          --version v1 \
          --lora_enable True \
          --lora_r 128 \
          --lora_alpha 256 \
          --data_path datasets/DriVLMe_sft_data.json \
          --video_folder videos/SDN_train_feats \
          --mm_use_vid_start_end \
          --bf16 True \
          --output_dir ./model_path/DriVLMe \
          --num_train_epochs 3 \
          --per_device_train_batch_size 1 \
          --per_device_eval_batch_size 4 \
          --gradient_accumulation_steps 1 \
          --evaluation_strategy "no" \
          --save_strategy "steps" \
          --save_steps 500 \
          --save_total_limit 3 \
          --learning_rate 5e-5 \
          --weight_decay 0. \
          --warmup_ratio 0.03 \
          --lr_scheduler_type "cosine" \
          --logging_steps 100 \
          --tf32 True \
          --model_max_length 2048 \
          --lazy_preprocess True

Evaluation

You can also download the pretrained checkpoints from this link

To run the open-loop evaluation, we can use the command

python drivlme/single_video_inference_SDN.py --model-name  /nfs/turbo/coe-chaijy-unreplicated/pre-trained-weights/LLaVA/LLaVA-7B-Lightening-v1-1/ --projection_path ./DriVLMe_model_weights/bddx_pretrain_ckpt/mm_projector.bin --lora_path  ./DriVLMe_model_weights/DriVLMe/ --json_path datasets/SDN_test_actions.json --video_root videos/SDN_test_videos/ --out_path SDN_test_actions.json

python evaluation/physical_action_acc.py

for NfD task and

python drivlme/single_video_inference_SDN.py --model-name  /nfs/turbo/coe-chaijy-unreplicated/pre-trained-weights/LLaVA/LLaVA-7B-Lightening-v1-1/ --projection_path ./DriVLMe_model_weights/bddx_pretrain_ckpt/mm_projector.bin --lora_path  ./DriVLMe_model_weights/DriVLMe/ --json_path datasets/SDN_test_conversations.json --video_root videos/SDN_test_videos/ --out_path SDN_test_conversations.json

python evaluation/diag_action_acc.py

for RfN task.

Citation

@misc{huang2024drivlmeenhancingllmbasedautonomous,
      title={DriVLMe: Enhancing LLM-based Autonomous Driving Agents with Embodied and Social Experiences}, 
      author={Yidong Huang and Jacob Sansom and Ziqiao Ma and Felix Gervits and Joyce Chai},
      year={2024},
      eprint={2406.03008},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2406.03008}, 
}

Acknowledgement

We thank the awesome research works Video-Chatgpt, DriveGPT4, DriveMLM

About

[IROS 2024] Official implementation of paper: DriVLMe: "Enhancing LLM-based Autonomous Driving Agents with Embodied and Social Experience"s

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published