Simple Python Memoizer decorator for classes, functions, and methods.
nemoize is available on PyPi
python3 -m pip install nemoize
Or you can install manually via the built distribution (wheel)/source dist from PyPi or github.
Import
from nemoize import memoize
Then use the @memoize
decorator on various entities as seen below
@memoize
class Test:
def __init__(self, value):
self._value = value
@property
def value(self):
return self._value
@memoize
def test_func():
return "hoot"
class Owl:
def __init__(self):
self.food = 1337
pass
@memoize(max_size=5)
def eat(self, num):
self.food -= num
There are also various configuration parameters to memoize()
:
@memoize(max_size=13)
: Max number of entries to keep in the cache:@memoize(cache_exceptions=True)
: Also cache exceptions, so any raised Exceptions will be the exact same Exception instance:@memoize(max_size=13, cache_exceptions=True)
: Together@memoize(arg_hash_function=str)
: Changes the hash function on arg and each keyword-arg to use the str() function, which can make lists "hashable"
The unit tests in test/unit/test_memoize.py
run through various use cases of using the @memoize annotation on classes, functions, and instance methods.
There is a benchmarking utility under benchmark/
that is used for benchmarking nemoize performance against other options and non-memoized scenarios.
Example numbers:
Benchmark test for Memoized vs Non-memoized classes with [1000] computations in their__init__() methods for [1000000] iterations
Non-memoized class creation + empty method call average time (ms): 0.01550699806213379
Memoized class creation + empty method call average time (ms): 0.0012589995861053468
Benchmark test for @memoize, non-memoized, a @simplified_memoize, and @functools.lru_cache comparison usingfunction calculating fibonacci sum for [100] fib numbers, for [10000000] iterations
@simplified_memoize fib average time (ms): 0.0001555999994277954
@memoize fib average time (ms): 4.4699978828430175e-05
@memoize(cache_exceptions=True) (to avoid delegation to functools.lru_cache) fib average time (ms): 0.00034309999942779544
@functools.lru_cache fib average time (ms): 4.440000057220459e-05