- Update config.yaml
- Update schema.yaml
- Update params.yaml
- Update the entity
- Update the configuration manager in src config
- Update the components
- Update the pipeline
- Update the main.py
- Update the app.py
- Data Ingestion
- Data validation
- Data Transformation
- Model Training
- Model Evaluation
- Python
- Sci-kit Learn
- MLFlow
- Dagshub
Clone the repository
git clone https://github.com/ssandra102/car_sales_data_science_workflow.git
python -m venv mlproj
mlproj/Scripts/activate
pip install -r requirements.txt
# Finally run the following command
python app.py
Now, open up your local host and port
- mlflow ui
MLFLOW_TRACKING_URI=https://dagshub.com/{USERNAME}/{REPO_NAME}.mlflow
MLFLOW_TRACKING_USERNAME=USERNAME
MLFLOW_TRACKING_PASSWORD=PASSWORD
python script.py
Run this to export as env variables:
export MLFLOW_TRACKING_URI=<https://dagshub.com/{USERNAME}/{REPO NAME}.mlflow>
export MLFLOW_TRACKING_USERNAME=<USERNAME>
export MLFLOW_TRACKING_PASSWORD=<PASSWORD>
hosted in Microsoft Azure : https://car-price-prediction-webapp.azurewebsites.net
(note: the values entered in the form are random. The predicted car price is in Lakhs.)