About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Convert a matrix from row-major layout to column-major layout or vice versa.
var dgetrans = require( '@stdlib/lapack-base-dge-trans' );
Converts a matrix from row-major layout to column-major layout or vice versa.
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var out = new Float64Array( 6 );
out = dgetrans( 'row-major', 2, 3, A, 3, out, 2 );
// returns <Float64Array>[ 1.0, 4.0, 2.0, 5.0, 3.0, 6.0 ]
The function has the following parameters:
- order: storage layout.
- M: number of rows in
A
. - N: number of columns in
A
. - A: input
Float64Array
. - LDA: stride of the first dimension of
A
(a.k.a., leading dimension of the matrixA
). - out: output
Float64Array
. - LDO: stride of the first dimension of
out
(a.k.a., leading dimension of the matrixout
).
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var A0 = new Float64Array( [ 0.0, 1.0, 2.0, 3.0, 4.0 ] );
var Out0 = new Float64Array( [ 0.0, 1.0, 2.0, 3.0, 4.0 ] );
// Create offset views...
var A1 = new Float64Array( A0.buffer, A0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var Out1 = new Float64Array( Out0.buffer, Out0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
dgetrans( 'row-major', 2, 2, A1, 2, Out1, 2 );
// Out0 => <Float64Array>[ 0.0, 1.0, 3.0, 2.0, 4.0 ]
Converts a matrix from row-major layout to column-major layout or vice versa using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var out = new Float64Array( 6 );
out = dgetrans.ndarray( 2, 3, A, 3, 1, 0, out, 2, 1, 0 );
// returns <Float64Array>[ 1.0, 4.0, 2.0, 5.0, 3.0, 6.0 ]
The function has the following parameters:
- M: number of rows in
A
. - N: number of columns in
A
. - A: input
Float64Array
. - sa1: stride of the first dimension of
A
. - sa2: stride of the second dimension of
A
. - oa: starting index for
A
. - out: output
Float64Array
. - so1: stride of the first dimension of
out
. - so2: stride of the second dimension of
out
. - oo: starting index for
out
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 0.0, 1.0, 2.0, 3.0, 4.0 ] );
var out = new Float64Array( [ 0.0, 0.0, 11.0, 312.0, 53.0, 412.0 ] );
dgetrans.ndarray( 2, 2, A, 2, 1, 1, out, 2, 1, 2 );
// out => <Float64Array>[ 0.0, 0.0, 1.0, 3.0, 2.0, 4.0 ]
var ndarray2array = require( '@stdlib/ndarray-base-to-array' );
var shape2strides = require( '@stdlib/ndarray-base-shape2strides' );
var numel = require( '@stdlib/ndarray-base-numel' );
var Float64Array = require( '@stdlib/array-float64' );
var dgetrans = require( '@stdlib/lapack-base-dge-trans' );
var shapeA = [ 2, 3 ];
var shapeOut = [ 3, 2 ];
// Row-major layout...
var order = 'row-major';
var stridesA = shape2strides( shapeA, order );
var stridesOut = shape2strides( shapeOut, order );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
console.log( ndarray2array( A, shapeA, stridesA, 0, order ) );
var out = new Float64Array( numel( shapeA ) );
out = dgetrans( order, shapeA[0], shapeA[1], A, stridesA[0], out, stridesOut[0] );
console.log( ndarray2array( out, shapeOut, stridesOut, 0, order ) );
// Column-major layout...
order = 'column-major';
stridesA = shape2strides( shapeA, order );
stridesOut = shape2strides( shapeOut, order );
A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
console.log( ndarray2array( A, shapeA, stridesA, 0, order ) );
out = new Float64Array( numel( shapeA ) );
out = dgetrans( order, shapeA[0], shapeA[1], A, stridesA[1], out, stridesOut[1] );
console.log( ndarray2array( out, shapeOut, stridesOut, 0, order ) );
// Input and output arrays have different layouts...
stridesA = shape2strides( shapeA, 'row-major' );
stridesOut = shape2strides( shapeOut, 'column-major' );
A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
console.log( ndarray2array( A, shapeA, stridesA, 0, 'row-major' ) );
out = new Float64Array( numel( shapeA ) );
out = dgetrans.ndarray( shapeA[0], shapeA[1], A, stridesA[0], stridesA[1], 0, out, stridesOut[0], stridesOut[1], 0 );
console.log( ndarray2array( out, shapeOut, stridesOut, 0, 'column-major' ) );
// Input and output arrays have different layouts...
stridesA = shape2strides( shapeA, 'column-major' );
stridesOut = shape2strides( shapeOut, 'row-major' );
A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
console.log( ndarray2array( A, shapeA, stridesA, 0, 'column-major' ) );
out = new Float64Array( numel( shapeA ) );
out = dgetrans.ndarray( shapeA[0], shapeA[1], A, stridesA[0], stridesA[1], 0, out, stridesOut[0], stridesOut[1], 0 );
console.log( ndarray2array( out, shapeOut, stridesOut, 0, 'row-major' ) );
npm install @stdlib/lapack-base-dge-trans
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
TODO
TODO.
TODO
TODO
TODO
TODO
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.