About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
A linear congruential pseudorandom number generator (LCG) based on Park and Miller.
npm install @stdlib/random-base-minstd
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var minstd = require( '@stdlib/random-base-minstd' );
Returns a pseudorandom integer on the interval [1, 2147483646]
.
var r = minstd();
// returns <number>
Returns a pseudorandom number on the interval [0,1)
.
var r = minstd.normalized();
// returns <number>
Returns a linear congruential pseudorandom number generator (LCG).
var rand = minstd.factory();
The function accepts the following options
:
- seed: pseudorandom number generator seed.
- state: an
Int32Array
containing pseudorandom number generator state. If provided, the function ignores theseed
option. - copy:
boolean
indicating whether to copy a provided pseudorandom number generator state. Setting this option tofalse
allows sharing state between two or more pseudorandom number generators. Setting this option totrue
ensures that a returned generator has exclusive control over its internal state. Default:true
.
By default, a random integer is used to seed the returned generator. To seed the generator, provide either an integer
on the interval [1, 2147483646]
var rand = minstd.factory({
'seed': 1234
});
var r = rand();
// returns 20739838
or, for arbitrary length seeds, an array-like object
containing signed 32-bit integers
var Int32Array = require( '@stdlib/array-int32' );
var rand = minstd.factory({
'seed': new Int32Array( [ 1234 ] )
});
var r = rand();
// returns 20739838
To return a generator having a specific initial state, set the generator state
option.
var rand;
var bool;
var r;
var i;
// Generate pseudorandom numbers, thus progressing the generator state:
for ( i = 0; i < 1000; i++ ) {
r = minstd();
}
// Create a new PRNG initialized to the current state of `minstd`:
rand = minstd.factory({
'state': minstd.state
});
// Test that the generated pseudorandom numbers are the same:
bool = ( rand() === minstd() );
// returns true
The generator name.
var str = minstd.NAME;
// returns 'minstd'
Minimum possible value.
var min = minstd.MIN;
// returns 1
Maximum possible value.
var max = minstd.MAX;
// returns 2147483646
The value used to seed minstd()
.
var rand;
var r;
var i;
// Generate pseudorandom values...
for ( i = 0; i < 100; i++ ) {
r = minstd();
}
// Generate the same pseudorandom values...
rand = minstd.factory({
'seed': minstd.seed
});
for ( i = 0; i < 100; i++ ) {
r = rand();
}
Length of generator seed.
var len = minstd.seedLength;
// returns <number>
Writable property for getting and setting the generator state.
var r = minstd();
// returns <number>
r = minstd();
// returns <number>
// ...
// Get the current state:
var state = minstd.state;
// returns <Int32Array>
r = minstd();
// returns <number>
r = minstd();
// returns <number>
// Reset the state:
minstd.state = state;
// Replay the last two pseudorandom numbers:
r = minstd();
// returns <number>
r = minstd();
// returns <number>
// ...
Length of generator state.
var len = minstd.stateLength;
// returns <number>
Size (in bytes) of generator state.
var sz = minstd.byteLength;
// returns <number>
Serializes the pseudorandom number generator as a JSON object.
var o = minstd.toJSON();
// returns { 'type': 'PRNG', 'name': '...', 'state': {...}, 'params': [] }
- The generator has a period of approximately
2.1e9
(see Numerical Recipes in C, 2nd Edition, p. 279). - An LCG is fast and uses little memory. On the other hand, because the generator is a simple linear congruential generator, the generator has recognized shortcomings. By today's PRNG standards, the generator's period is relatively short. More importantly, the "randomness quality" of the generator's output is lacking. These defects make the generator unsuitable, for example, in Monte Carlo simulations and in cryptographic applications. For more on the advantages and disadvantages of LCGs, see Wikipedia.
- If PRNG state is "shared" (meaning a state array was provided during PRNG creation and not copied) and one sets the generator state to a state array having a different length, the PRNG does not update the existing shared state and, instead, points to the newly provided state array. In order to synchronize PRNG output according to the new shared state array, the state array for each relevant PRNG must be explicitly set.
- If PRNG state is "shared" and one sets the generator state to a state array of the same length, the PRNG state is updated (along with the state of all other PRNGs sharing the PRNG's state array).
var minstd = require( '@stdlib/random-base-minstd' );
var seed;
var rand;
var i;
// Generate pseudorandom numbers...
for ( i = 0; i < 100; i++ ) {
console.log( minstd() );
}
// Create a new pseudorandom number generator...
seed = 1234;
rand = minstd.factory({
'seed': seed
});
for ( i = 0; i < 100; i++ ) {
console.log( rand() );
}
// Create another pseudorandom number generator using a previous seed...
rand = minstd.factory({
'seed': minstd.seed
});
for ( i = 0; i < 100; i++ ) {
console.log( rand() );
}
- Park, S. K., and K. W. Miller. 1988. "Random Number Generators: Good Ones Are Hard to Find." Communications of the ACM 31 (10). New York, NY, USA: ACM: 1192–1201. doi:10.1145/63039.63042.
- Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. 1992. Numerical Recipes in C: The Art of Scientific Computing, Second Edition. Cambridge University Press.
@stdlib/random-array/minstd
: create an array containing pseudorandom numbers generated using a linear congruential pseudorandom number generator (LCG).@stdlib/random-iter/minstd
: create an iterator for a linear congruential pseudorandom number generator (LCG) based on Park and Miller.@stdlib/random-streams/minstd
: create a readable stream for a linear congruential pseudorandom number generator (LCG) based on Park and Miller.@stdlib/random-base/minstd-shuffle
: A linear congruential pseudorandom number generator (LCG) whose output is shuffled.@stdlib/random-base/mt19937
: A 32-bit Mersenne Twister pseudorandom number generator.@stdlib/random-base/randi
: pseudorandom numbers having integer values.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.