CIGN is a novel framework can directly learn category-wise semantic features to achieve continual audio- visual learning.
To setup the environment, please simply run
pip install -r requirements.txt
Data can be downloaded from Mix and Localize: Localizing Sound Sources in Mixtures
Data can be downloaded from Localizing Visual Sounds the Hard Way
For training the CIGN model, please run
python train_avctl.py --multiprocessing_distributed \
--port 12345 \
--train_data_path /path/to/datasets/vgginstruments/train/ \
--test_data_path /path/to/datasets/vgginstruments/train/ \
--experiment_name_pre vgginstruments_g0_baseline_e20 \
--experiment_name vgginstruments_g1_baseline_e20_v3_true \
--resume_av_token \
--train_stage 1 --test_stage 1 \
--model 'avctl' \
--trainset 'vgginstruments_group_0,vgginstruments_group_1' --num_class 18 \
--testset 'vgginstruments_group_0,vgginstruments_group_1' \
--epochs 20 \
--batch_size 128 \
--init_lr 0.0001 \
--attn_assign hard \
--dim 512 \
--depth_aud 3 \
--depth_vis 3
For testing and visualization, simply run
python test.py --test_data_path /path/to/vgginstruments/ \
--test_gt_path /path/to/vgginstruments/anno/ \
--model_dir checkpoints \
--experiment_name vgginstruments_cign \
--model 'avgn' \
--testset 'vgginstruments_group_0,vgginstruments_group_1' \
--attn_assign soft \
--dim 512 \
--depth_aud 3 \
--depth_vis 3
If you find this repository useful, please cite our paper:
@inproceedings{mo2023class,
title={Class-Incremental Grouping Network for Continual Audio-Visual Learning},
author={Mo, Shentong and Pian, Weiguo and Tian, Yapeng},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
year={2023}
}