Skip to content

Commit

Permalink
fix dependencies
Browse files Browse the repository at this point in the history
  • Loading branch information
stemangiola committed Sep 25, 2024
1 parent 60c646e commit 1335441
Show file tree
Hide file tree
Showing 9 changed files with 61 additions and 12 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,4 @@ TidyGenomicsTranscriptomicsWorkshop_bioc2023.Rproj
.DS_Store
/doc/
/Meta/
tidyomicsWorkshop.Rproj
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ Encoding: UTF-8
LazyData: true
LazyDataCompression: xz
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.3
RoxygenNote: 7.3.2
Depends:
Biobase,
R (>= 4.2.0)
Expand Down
16 changes: 16 additions & 0 deletions man/gate_seurat_obj.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

16 changes: 16 additions & 0 deletions man/seurat_obj.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

16 changes: 16 additions & 0 deletions man/seurat_obj_UMAP3.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

4 changes: 2 additions & 2 deletions vignettes/pseudobulk_transcriptomics.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ To explore the grouping, we can use tidyverse `slice` to choose a row (cell_type

```{r pseudobulk3}
pseudo_bulk_nested |>
slice(1) |>
dplyr::slice(1) |>
pull(grouped_summarized_experiment)
```

Expand Down Expand Up @@ -172,7 +172,7 @@ If we pull out the SummarizedExperiment object for the first cell type, as befor

```{r pseudobulk6}
pseudo_bulk_nested |>
slice(1) |>
dplyr::slice(1) |>
pull(grouped_summarized_experiment)
```

Expand Down
8 changes: 4 additions & 4 deletions vignettes/single_cell_bioconductor_transcriptomics.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -335,7 +335,7 @@ We'll demonstrate creating a 3D plot using some data that has 3 UMAP dimensions.
pbmc <- tidyomicsWorkshop::sce_obj_UMAP3
pbmc |>
plot_ly(
ttservice::plot_ly(
x = ~`UMAP_1`,
y = ~`UMAP_2`,
z = ~`UMAP_3`,
Expand Down Expand Up @@ -371,7 +371,7 @@ First let's have a look to the cell types that constitute this dataset

```{r nest SingleCellExperiment count}
sce_obj |>
count(cell_type)
dplyr::count(cell_type)
```

Let's group the cells based on cell identity using `nest`
Expand All @@ -389,7 +389,7 @@ Let's see what the first element of the Surat column looks like

```{r nest sce 2}
sce_obj_nested |>
slice(1) |>
dplyr::slice(1) |>
pull(sce)
```

Expand Down Expand Up @@ -439,7 +439,7 @@ Let's have a look to the first heatmap

```{r nest sce heatmap 2, fig.width=8, fig.height=8}
sce_obj_nested |>
slice(1) |>
dplyr::slice(1) |>
pull(umap)
```

Expand Down
6 changes: 3 additions & 3 deletions vignettes/single_cell_seurat_transcriptomics.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -453,7 +453,7 @@ First let's have a look to the cell types that constitute this dataset

```{r nest seurat count}
seurat_obj |>
count(cell_type)
dplyr::count(cell_type)
```

Let's group the cells based on cell identity using `nest`
Expand All @@ -474,7 +474,7 @@ Let's see what the first element of the Surat column looks like

```{r nest seurat 2}
seurat_obj_nested |>
slice(1) |>
dplyr::slice(1) |>
pull(seurat)
```
Now, let's perform a differential gene-transcript abundance analysis between the two conditions for each cell type.
Expand Down Expand Up @@ -521,7 +521,7 @@ Let's have a look to the first heatmap

```{r nest seurat heatmap 2, fig.width=8, fig.height=8}
seurat_obj_nested |>
slice(1) |>
dplyr::slice(1) |>
pull(heatmap)
```

Expand Down
4 changes: 2 additions & 2 deletions vignettes/solutions_transcriptomics.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ seurat_obj |>
mutate(gamma_delta = signature_score > 0.7) |>
count(gamma_delta) |>
dplyr::count(gamma_delta) |>
summarise(proportion = n/sum(n))
```

Expand All @@ -50,5 +50,5 @@ There is a cluster of cells characterised by a low RNA output (nCount_RNA < 100)
```{r}
seurat_obj |>
filter(nCount_RNA < 100) %>%
count(cell_type)
dplyr::count(cell_type)
```

0 comments on commit 1335441

Please sign in to comment.