- Revisiting Pre-trained Models for Chinese Natural Language Processing
- Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, Guoping Hu
- Published in Findings of EMNLP 2020
中文MacBERT | 中文ELECTRA | 中文XLNet | 知识蒸馏工具TextBrewer | 模型裁剪工具TextPruner
更多HFL发布的资源:https://github.com/ymcui/HFL-Anthology
2023/3/28 开源了中文LLaMA&Alpaca大模型,可快速在PC上部署体验,查看:https://github.com/ymcui/Chinese-LLaMA-Alpaca
2022/3/30 发布了新的预训练模型PERT:https://github.com/ymcui/PERT
2021/12/17 发布了模型裁剪工具TextPruner:https://github.com/airaria/TextPruner
2021/10/24 发布了首个面向少数民族语言的预训练模型CINO:https://github.com/ymcui/Chinese-Minority-PLM
2021/7/21 "自然语言处理:基于预训练模型的方法" 一书正式出版。
2020/11/3 预训练好的中文MacBERT已发布,使用方法与BERT一致。
2020/9/15 论文"Revisiting Pre-Trained Models for Chinese Natural Language Processing" 被Findings of EMNLP 录用为长文。
章节 | 描述 |
---|---|
简介 | 简要介绍MacBERT |
下载 | 下载MacBERT |
快速加载 | 介绍如何使用 🤗Transformers 快速加载模型 |
基线效果 | 在中文NLP任务上的效果 |
FAQ | 常见问题 |
引用 | 文章引用信息 |
MacBERT 是BERT的改进版本,引入了纠错型掩码语言模型(MLM as correction,Mac)预训练任务,缓解了“预训练-下游任务”不一致的问题。
掩码语言模型(MLM)中,引入了[MASK]标记进行掩码,但[MASK]标记并不会出现在下游任务中。在MacBERT中,我们使用相似词来取代[MASK]标记。相似词通过Synonyms toolkit (Wang and Hu, 2017)工具获取,算法基于word2vec (Mikolov et al., 2013)相似度计算。同时我们也引入了Whole Word Masking(wwm)和N-gram masking技术。当要对N-gram进行掩码时,我们会对N-gram里的每个词分别查找相似词。当没有相似词可替换时,我们将使用随机词进行替换。
以下是训练样本示例。
例子 | |
---|---|
原始句子 | we use a language model to predict the probability of the next word. |
MLM | we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word . |
Whole word masking | we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word . |
N-gram masking | we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word . |
MLM as correction | we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word . |
MacBERT的主要框架与BERT完全一致,可在不修改现有代码的基础上进行无缝过渡。
更多细节请参考我们的论文:Revisiting Pre-trained Models for Chinese Natural Language Processing
主要提供TensorFlow 1.x版本的模型下载。
MacBERT-large, Chinese
: 24-layer, 1024-hidden, 16-heads, 324M parametersMacBERT-base, Chinese
:12-layer, 768-hidden, 12-heads, 102M parameters
模型 | Google Drive | 百度盘 | 大小 |
---|---|---|---|
MacBERT-large, Chinese |
TensorFlow | TensorFlow(pw:zejf) | 1.2G |
MacBERT-base, Chinese |
TensorFlow | TensorFlow(pw:61ga) | 383M |
如果需要PyTorch或者TensorFlow2版本的模型:
- 使用 🤗Transformers 自行转换
- 或者从 https://huggingface.co/hfl 下载
下载步骤(也可以直接用git将整个目录克隆下来):
- 进入https://huggingface.co/hfl 之后选择某个MacBERT模型,例如MacBERT-base:https://huggingface.co/hfl/chinese-macbert-base
- 选择"files and versions"选项卡
- 点击需要下载的bin/json等文件
通过 🤗Transformers 可以快速加载MacBERT模型。
tokenizer = BertTokenizer.from_pretrained("MODEL_NAME")
model = BertModel.from_pretrained("MODEL_NAME")
注意:请使用BertTokenizer和BertModel来加载MacBERT模型!
对应的MODEL_NAME
如下所示:
原模型 | 模型调用名 |
---|---|
MacBERT-large | hfl/chinese-macbert-large |
MacBERT-base | hfl/chinese-macbert-base |
这里展示MacBERT在6个下游任务上的效果(更多结果请参考论文):
- CMRC 2018 (Cui et al., 2019):抽取式阅读理解(简体中文)
- DRCD (Shao et al., 2018):抽取式阅读理解(繁体中文)
- XNLI (Conneau et al., 2018):自然语言推断
- ChnSentiCorp:情感分类
- LCQMC (Liu et al., 2018):句对匹配
- BQ Corpus (Chen et al., 2018):句对匹配
为了保证结果的稳定性,我们同时给出独立运行10次的平均值(括号内)和最大值。
CMRC 2018数据集是哈工大讯飞联合实验室发布的中文机器阅读理解数据。 根据给定问题,系统需要从篇章中抽取出片段作为答案,形式与SQuAD相同。 评测指标为:EM / F1
Model | Development | Test | Challenge | #Params |
---|---|---|---|---|
BERT-base | 65.5 (64.4) / 84.5 (84.0) | 70.0 (68.7) / 87.0 (86.3) | 18.6 (17.0) / 43.3 (41.3) | 102M |
BERT-wwm | 66.3 (65.0) / 85.6 (84.7) | 70.5 (69.1) / 87.4 (86.7) | 21.0 (19.3) / 47.0 (43.9) | 102M |
BERT-wwm-ext | 67.1 (65.6) / 85.7 (85.0) | 71.4 (70.0) / 87.7 (87.0) | 24.0 (20.0) / 47.3 (44.6) | 102M |
RoBERTa-wwm-ext | 67.4 (66.5) / 87.2 (86.5) | 72.6 (71.4) / 89.4 (88.8) | 26.2 (24.6) / 51.0 (49.1) | 102M |
ELECTRA-base | 68.4 (68.0) / 84.8 (84.6) | 73.1 (72.7) / 87.1 (86.9) | 22.6 (21.7) / 45.0 (43.8) | 102M |
MacBERT-base | 68.5 (67.3) / 87.9 (87.1) | 73.2 (72.4) / 89.5 (89.2) | 30.2 (26.4) / 54.0 (52.2) | 102M |
ELECTRA-large | 69.1 (68.2) / 85.2 (84.5) | 73.9 (72.8) / 87.1 (86.6) | 23.0 (21.6) / 44.2 (43.2) | 324M |
RoBERTa-wwm-ext-large | 68.5 (67.6) / 88.4 (87.9) | 74.2 (72.4) / 90.6 (90.0) | 31.5 (30.1) / 60.1 (57.5) | 324M |
MacBERT-large | 70.7 (68.6) / 88.9 (88.2) | 74.8 (73.2) / 90.7 (90.1) | 31.9 (29.6) / 60.2 (57.6) | 324M |
DRCD数据集由中国台湾台达研究院发布,其形式与SQuAD相同,是基于繁体中文的抽取式阅读理解数据集。 由于ERNIE中去除了繁体中文字符,故不建议在繁体中文数据上使用ERNIE(或转换成简体中文后再处理)。 评测指标为:EM / F1
Model | Development | Test | #Params |
---|---|---|---|
BERT-base | 83.1 (82.7) / 89.9 (89.6) | 82.2 (81.6) / 89.2 (88.8) | 102M |
BERT-wwm | 84.3 (83.4) / 90.5 (90.2) | 82.8 (81.8) / 89.7 (89.0) | 102M |
BERT-wwm-ext | 85.0 (84.5) / 91.2 (90.9) | 83.6 (83.0) / 90.4 (89.9) | 102M |
RoBERTa-wwm-ext | 86.6 (85.9) / 92.5 (92.2) | 85.6 (85.2) / 92.0 (91.7) | 102M |
ELECTRA-base | 87.5 (87.0) / 92.5 (92.3) | 86.9 (86.6) / 91.8 (91.7) | 102M |
MacBERT-base | 89.4 (89.2) / 94.3 (94.1) | 89.5 (88.7) / 93.8 (93.5) | 102M |
ELECTRA-large | 88.8 (88.7) / 93.3 (93.2) | 88.8 (88.2) / 93.6 (93.2) | 324M |
RoBERTa-wwm-ext-large | 89.6 (89.1) / 94.8 (94.4) | 89.6 (88.9) / 94.5 (94.1) | 324M |
MacBERT-large | 91.2 (90.8) / 95.6 (95.3) | 91.7 (90.9) / 95.6 (95.3) | 324M |
在自然语言推断任务中,我们采用了XNLI数据,需要将文本分成三个类别:entailment
,neutral
,contradictory
。
评测指标为:Accuracy
Model | Development | Test | #Params |
---|---|---|---|
BERT-base | 77.8 (77.4) | 77.8 (77.5) | 102M |
BERT-wwm | 79.0 (78.4) | 78.2 (78.0) | 102M |
BERT-wwm-ext | 79.4 (78.6) | 78.7 (78.3) | 102M |
RoBERTa-wwm-ext | 80.0 (79.2) | 78.8 (78.3) | 102M |
ELECTRA-base | 77.9 (77.0) | 78.4 (77.8) | 102M |
MacBERT-base | 80.3 (79.7) | 79.3 (78.8) | 102M |
ELECTRA-large | 81.5 (80.8) | 81.0 (80.9) | 324M |
RoBERTa-wwm-ext-large | 82.1 (81.3) | 81.2 (80.6) | 324M |
MacBERT-large | 82.4 (81.8) | 81.3 (80.6) | 324M |
在情感分析任务中,二分类的情感分类数据集ChnSentiCorp。 评测指标为:Accuracy
Model | Development | Test | #Params |
---|---|---|---|
BERT-base | 94.7 (94.3) | 95.0 (94.7) | 102M |
BERT-wwm | 95.1 (94.5) | 95.4 (95.0) | 102M |
BERT-wwm-ext | 95.4 (94.6) | 95.3 (94.7) | 102M |
RoBERTa-wwm-ext | 95.0 (94.6) | 95.6 (94.8) | 102M |
ELECTRA-base | 93.8 (93.0) | 94.5 (93.5) | 102M |
MacBERT-base | 95.2 (94.8) | 95.6 (94.9) | 102M |
ELECTRA-large | 95.2 (94.6) | 95.3 (94.8) | 324M |
RoBERTa-wwm-ext-large | 95.8 (94.9) | 95.8 (94.9) | 324M |
MacBERT-large | 95.7 (95.0) | 95.9 (95.1) | 324M |
LCQMC由哈工大深圳研究生院智能计算研究中心发布。 评测指标为:Accuracy
Model | Development | Test | #Params |
---|---|---|---|
BERT | 89.4 (88.4) | 86.9 (86.4) | 102M |
BERT-wwm | 89.4 (89.2) | 87.0 (86.8) | 102M |
BERT-wwm-ext | 89.6 (89.2) | 87.1 (86.6) | 102M |
RoBERTa-wwm-ext | 89.0 (88.7) | 86.4 (86.1) | 102M |
ELECTRA-base | 90.2 (89.8) | 87.6 (87.3) | 102M |
MacBERT-base | 89.5 (89.3) | 87.0 (86.5) | 102M |
ELECTRA-large | 90.7 (90.4) | 87.3 (87.2) | 324M |
RoBERTa-wwm-ext-large | 90.4 (90.0) | 87.0 (86.8) | 324M |
MacBERT-large | 90.6 (90.3) | 87.6 (87.1) | 324M |
BQ Corpus由哈工大深圳研究生院智能计算研究中心发布,是面向银行领域的数据集。 评测指标为:Accuracy
Model | Development | Test | #Params |
---|---|---|---|
BERT | 86.0 (85.5) | 84.8 (84.6) | 102M |
BERT-wwm | 86.1 (85.6) | 85.2 (84.9) | 102M |
BERT-wwm-ext | 86.4 (85.5) | 85.3 (84.8) | 102M |
RoBERTa-wwm-ext | 86.0 (85.4) | 85.0 (84.6) | 102M |
ELECTRA-base | 84.8 (84.7) | 84.5 (84.0) | 102M |
MacBERT-base | 86.0 (85.5) | 85.2 (84.9) | 102M |
ELECTRA-large | 86.7 (86.2) | 85.1 (84.8) | 324M |
RoBERTa-wwm-ext-large | 86.3 (85.7) | 85.8 (84.9) | 324M |
MacBERT-large | 86.2 (85.7) | 85.6 (85.0) | 324M |
Q1: 有英文版的MacBERT吗?
A1: 目前没有。
Q2: 如何使用MacBERT?
A2: 和使用BERT一样,只需要简单替换模型文件和config就能使用了。当然,你也可以通过加载我们的模型(即初始化transformers部分)来进一步训练其他预训练模型。
Q3: 能提供MacBERT的训练代码吗?
A3: 暂无开源计划。
Q4: 能开源预训练的语料吗?
A4: 我们无法开源训练语料,因为没有相应重发布的权利。GitHub上有一些开源中文语料资源,可以多加关注利用。
Q5: 有计划在更大的语料上训练MacBERT并开源吗?
A5: 我们暂时没有计划。
如果本项目中的资源对您的研究有帮助,请引用以下论文。
@inproceedings{cui-etal-2020-revisiting,
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
author = "Cui, Yiming and
Che, Wanxiang and
Liu, Ting and
Qin, Bing and
Wang, Shijin and
Hu, Guoping",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
pages = "657--668",
}
或者:
@journal{cui-etal-2021-pretrain,
title={Pre-Training with Whole Word Masking for Chinese BERT},
author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing},
journal={IEEE Transactions on Audio, Speech and Language Processing},
year={2021},
url={https://ieeexplore.ieee.org/document/9599397},
doi={10.1109/TASLP.2021.3124365},
}
感谢Google TPU Research Cloud (TFRC)提供计算资源支持。
如有问题,请在GitHub Issue中提交。
- 在提交问题之前,请先查看FAQ能否解决问题,同时建议查阅以往的issue是否能解决你的问题。
- 重复以及与本项目无关的issue会被[stable-bot](stale · GitHub Marketplace)处理,敬请谅解。
- 我们会尽可能的解答你的问题,但无法保证你的问题一定会被解答。
- 礼貌地提出问题,构建和谐的讨论社区。