pip install nlg-yongzhuo
from nlg_yongzhuo import *
doc = """PageRank算法简介。" \
"是上世纪90年代末提出的一种计算网页权重的算法! " \
"当时,互联网技术突飞猛进,各种网页网站爆炸式增长。 " \
"业界急需一种相对比较准确的网页重要性计算方法。 " \
"是人们能够从海量互联网世界中找出自己需要的信息。 " \
"百度百科如是介绍他的思想:PageRank通过网络浩瀚的超链接关系来确定一个页面的等级。 " \
"Google把从A页面到B页面的链接解释为A页面给B页面投票。 " \
"Google根据投票来源甚至来源的来源,即链接到A页面的页面。 " \
"和投票目标的等级来决定新的等级。简单的说, " \
"一个高等级的页面可以使其他低等级页面的等级提升。 " \
"具体说来就是,PageRank有两个基本思想,也可以说是假设。 " \
"即数量假设:一个网页被越多的其他页面链接,就越重)。 " \
"质量假设:一个网页越是被高质量的网页链接,就越重要。 " \
"总的来说就是一句话,从全局角度考虑,获取重要的信。 """.replace(" ", "").replace('"', '')
# fs可以填其中一个或几个 text_pronouns, text_teaser, mmr, text_rank, lead3, lda, lsi, nmf
res_score = text_summarize(doc, fs=[text_pronouns, text_teaser, mmr, text_rank, lead3, lda, lsi, nmf])
for rs in res_score:
print(rs)
# feature_base
from nlg_yongzhuo import word_significance
from nlg_yongzhuo import text_pronouns
from nlg_yongzhuo import text_teaser
from nlg_yongzhuo import mmr
# graph_base
from nlg_yongzhuo import text_rank
# topic_base
from nlg_yongzhuo import lda
from nlg_yongzhuo import lsi
from nlg_yongzhuo import nmf
# nous_base
from nlg_yongzhuo import lead3
docs ="和投票目标的等级来决定新的等级.简单的说。" \
"是上世纪90年代末提出的一种计算网页权重的算法! " \
"当时,互联网技术突飞猛进,各种网页网站爆炸式增长。" \
"业界急需一种相对比较准确的网页重要性计算方法。" \
"是人们能够从海量互联网世界中找出自己需要的信息。" \
"百度百科如是介绍他的思想:PageRank通过网络浩瀚的超链接关系来确定一个页面的等级。" \
"Google把从A页面到B页面的链接解释为A页面给B页面投票。" \
"Google根据投票来源甚至来源的来源,即链接到A页面的页面。" \
"一个高等级的页面可以使其他低等级页面的等级提升。" \
"具体说来就是,PageRank有两个基本思想,也可以说是假设。" \
"即数量假设:一个网页被越多的其他页面链接,就越重)。" \
"质量假设:一个网页越是被高质量的网页链接,就越重要。" \
"总的来说就是一句话,从全局角度考虑,获取重要的信。"
# 1. word_significance
sums_word_significance = word_significance.summarize(docs, num=6)
print("word_significance:")
for sum_ in sums_word_significance:
print(sum_)
# 2. text_pronouns
sums_text_pronouns = text_pronouns.summarize(docs, num=6)
print("text_pronouns:")
for sum_ in sums_text_pronouns:
print(sum_)
# 3. text_teaser
sums_text_teaser = text_teaser.summarize(docs, num=6)
print("text_teaser:")
for sum_ in sums_text_teaser:
print(sum_)
# 4. mmr
sums_mmr = mmr.summarize(docs, num=6)
print("mmr:")
for sum_ in sums_mmr:
print(sum_)
# 5.text_rank
sums_text_rank = text_rank.summarize(docs, num=6)
print("text_rank:")
for sum_ in sums_text_rank:
print(sum_)
# 6. lda
sums_lda = lda.summarize(docs, num=6)
print("lda:")
for sum_ in sums_lda:
print(sum_)
# 7. lsi
sums_lsi = lsi.summarize(docs, num=6)
print("mmr:")
for sum_ in sums_lsi:
print(sum_)
# 8. nmf
sums_nmf = nmf.summarize(docs, num=6)
print("nmf:")
for sum_ in sums_nmf:
print(sum_)
# 9. lead3
sums_lead3 = lead3.summarize(docs, num=6)
print("lead3:")
for sum_ in sums_lead3:
print(sum_)
- text_summary
- text_augnment(todo)
- text_generation(todo)
- text_translation(todo)
- 1. 直接进入目录文件运行即可, 例如进入:nlg_yongzhuo/text_summary/feature_base/
- 2. 运行: python text_teaser.py
- 哈工大的新浪微博短文本摘要LCSTS
- 教育新闻自动摘要语料chinese_abstractive_corpus
- NLPCC 2017 task3Single Document Summarization
- 娱乐新闻等“神策杯”2018高校算法大师赛
- pagerank: The PageRank citation ranking: Bringing order to the Web. 1999
- textrank: TextRank: Bringing Order into Texts
- textteaser: [Automatic Text Summarization for Indonesian Language Using TextTeaser]
- significance: The Automatic Creation of Literature Abstracts*
- LSI: Text summarization using Latent Semantic Analysis
- LDA: Latent Dirichlet Allocation
- 文本摘要综述: https://github.com/icoxfog417/awesome-text-summarization
- textteaser: https://github.com/IndigoResearch/textteaser
- NaiveSumm: https://github.com/amsqr/NaiveSumm
- ML主题模型: https://github.com/ljpzzz/machinelearning
*希望对你有所帮助!