Implementation of selected Inverse Reinforcement Learning (IRL) algorithms in Python/Tensorflow.
$ python demo.py
- Linear inverse reinforcement learning (Ng & Russell, 2000)
- Maximum entropy inverse reinforcement learning (Ziebart et al., 2008)
- Maximum entropy deep inverse reinforcement learning (Wulfmeier et al., 2015)
- 2D gridworld
- 1D gridworld
- Value iteration
If you use this software in your publications, please cite it using the following BibTeX entry:
@misc{lu2017irl-imitation,
author = {Lu, Yiren},
doi = {10.5281/zenodo.6796157},
month = {7},
title = {{Implementations of inverse reinforcement learning algorithms in Python/Tensorflow}},
url = {https://github.com/yrlu/irl-imitation},
year = {2017}
}
- python 2.7
- cvxopt
- Tensorflow 0.12.1
- matplotlib
- Following Ng & Russell 2000 paper: Algorithms for Inverse Reinforcement Learning, algorithm 1
$ python linear_irl_gridworld.py --act_random=0.3 --gamma=0.5 --l1=10 --r_max=10
(This implementation is largely influenced by Matthew Alger's maxent implementation)
- Following Ziebart et al. 2008 paper: Maximum Entropy Inverse Reinforcement Learning
$ python maxent_irl_gridworld.py --help
for options descriptions
$ python maxent_irl_gridworld.py --height=10 --width=10 --gamma=0.8 --n_trajs=100 --l_traj=50 --no-rand_start --learning_rate=0.01 --n_iters=20
$ python maxent_irl_gridworld.py --gamma=0.8 --n_trajs=400 --l_traj=50 --rand_start --learning_rate=0.01 --n_iters=20
- Following Wulfmeier et al. 2015 paper: Maximum Entropy Deep Inverse Reinforcement Learning. FC version implemented. The implementation does not follow exactly the model proposed in the paper. Some tweaks applied including elu activations, clipping gradients, l2 regularization etc.
$ python deep_maxent_irl_gridworld.py --help
for options descriptions
$ python deep_maxent_irl_gridworld.py --learning_rate=0.02 --n_trajs=200 --n_iters=20