Implementation of ReXNet-tiny model on CIFAR10 using PyTorch
It's unofficial code! [origin paper]
- ReXNet-tiny-cifar
- Various optimizer (SGD, SGDP, SGDMix, Adam, AdamP, AdamW)
- Scheduler (step, multistep, cosine)
- Augmentation (CutMix, RandAugment, RandAugmentv2 with CutMix)
- Comparison with EfficientNet-tiny
- Model Compression
- Add other models (EfficientNet, GhostNet, MobileNeXt, WideResNet) (TODO)
- Hyperparameter (TODO)
(1) simple and effective design principles to mitigate the representational bottleneck
(2) study the matrix rank on the features generated by ten thousand random networks
ReXNet-tiny
CUDA_VISIBLE_DEVICES=0 python train.py --epochs 100 \
--savepath ./checkpoint/cifar10/sgd
ReXNet-tiny with SGDMix
CUDA_VISIBLE_DEVICES=0 python train_sgdmix.py --epochs 100 \
--savepath ./checkpoint/cifar10/sgdmix \
--name sgdmix
ReXNet-tiny with RandAugment12 and cutmix 0.5
CUDA_VISIBLE_DEVICES=0 python train_sgd_randaugcutout_cutmix.py \
--savepath ./checkpoint/cifar10/sgd_randaugsubin_cutmix12 \
--name sgd_randaugsubin_cutmix12 \
--rand_n 1 --rand_m 2
Model | Input Res. | Optimizer | Top-1 acc. | Params |
---|---|---|---|---|
ReXNet-tiny-cifar | 32x32 | Adam | 93.82 | 1.9M |
ReXNet-tiny-cifar | 32x32 | AdamW | 93.82 | 1.9M |
ReXNet-tiny-cifar | 32x32 | AdamP | TODO | 1.9M |
ReXNet-tiny-cifar | 32x32 | SGD | 94.90 | 1.9M |
ReXNet-tiny-cifar | 32x32 | SGDP | 94.43 | 1.9M |
ReXNet-tiny-cifar | 32x32 | SGDMix | 95.04 | 1.9M |
Model | Input Res. | Optimizer | Top-1 acc. | Params |
---|---|---|---|---|
ReXNet-tiny-cifar, step 30 | 32x32 | SGDMix | 95.04 | 1.9M |
ReXNet-tiny-cifar, multistep 30 | 32x32 | SGDMix | 95.13 | 1.9M |
ReXNet-tiny-cifar, cosine 30 | 32x32 | SGDMix | 95.02 | 1.9M |
Model | Input Res. | Optimizer | Top-1 acc. | Params |
---|---|---|---|---|
ReXNet-tiny-cifar, Multi step [30, 60, 90] | 32x32 | SGDMix | TODO | 1.9M |
Model | Input Res. | Optimizer | Top-1 acc. | Params |
---|---|---|---|---|
ReXNet-tiny-cifar | 32x32 | Adam | 93.82 | 1.9M |
ReXNet-tiny-cifar + cutmix | 32x32 | Adam | 94.97 | 1.9M |
ReXNet-tiny-cifar + cutmix | 32x32 | SGDMix | TODO | 1.9M |
ReXNet-tiny-cifar + randaug (1, 2) | 32x32 | Adam | 94. | 1.9M |
ReXNet-tiny-cifar + randaug (1, 2) + cutmix | 32x32 | Adam | 95.02 | 1.9M |
ReXNet-tiny-cifar + randaug (1, 2) + cutmix | 32x32 | SGDMix | TODO | 1.9M |
Model | Input Res. | Optimizer | Top-1 acc. | Params |
---|---|---|---|---|
Efficientnet-tiny-cifar | 32x32 | Adam | 93.18 | |
ReXNet-tiny-cifar | 32x32 | Adam | 93.82 | 1.9M |
- Subin Yang