Skip to content

SnapCCESS: Ensemble deep learning of embeddings for clustering multimodal single-cell omics data

Notifications You must be signed in to change notification settings

yulijia/SnapCCESS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is the development repo, for the stable repo, please check https://github.com/PYangLab/SnapCCESS

SnapCCESS

SnapCCESS: Ensemble deep learning of embeddings for clustering multimodal single-cell omics data.

We propose SnapCCESS for clustering cells by integrating data modalities in multimodal single-cell omics data using an unsupervised ensemble deep learning framework. By creating snapshots of embeddings of multimodality using variational autoencoders, SnapCCESS can be coupled with various clustering algorithms for generating consensus clustering of cells.

img

Installation

Python

pip install snapccess  --index-url https://pypi.org/simple

For detailed description of each function, please see https://github.com/yulijia/SnapCCESS/tree/main/snapccess-py

R

remotes::install_github(repo='yulijia/SnapCCESS',branch='main',subdir='snapccess-r/SnapCCESS')

For detailed description of each function, please see https://github.com/yulijia/SnapCCESS/tree/main/snapccess-r

NOTE: This tutorial only explains how to use this package; it doesn't recommend the best parameters for your datasets. For the datasets used in the published paper associated with this package, the parameters are listed in the same paper. Please refer to the paper to guide you in finding the best parameters.

For python version of script, please see an_example_of_generate_embedding_using_SnapCCESS_python_version

For R version of script, please see SnapCCESS_R_example

References

Lijia Yu, Chunlei Liu, Jean Yee Hwa Yang, Pengyi Yang. Ensemble deep learning of embeddings for clustering multimodal single-cell omics data. Bioinformatics, 39(6), btad382, doi: https://doi.org/10.1093/bioinformatics/btad382, (2023).

About

SnapCCESS: Ensemble deep learning of embeddings for clustering multimodal single-cell omics data

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published