S.No | Projects |
---|---|
01. | Cats vs Dogs Classifier |
02. | Rock Paper and Scissors Classifier |
03. | American Sign Language Classifier |
04. | Humans vs Horses Classifier |
05. | GAN |
06. | Deep Convolution GAN |
07. | Conditional GAN |
08. | Wasserstein GAN |
09. | Text Classification |
Transfer Learning (Binary Classification)
- Transfer Learning (pre-trained InceptionV3 network)
- Data Augmentation
- Regularization using Dropouts ( to make network more efficient and prevent overfitting)
Multiclass Classification
- Data Augmentation
- Regularization using Dropouts ( to make network more efficient and prevent overfitting)
Multiclass Classificaton
- Data Augmentation
- Convolution Neural Networks
Transfer Learning
- Transfer Learning (pre-trained InceptionV3 network)
- Data Augmentation
- Regularization using Dropouts ( to make network more efficient and prevent overfitting)
- Callbacks (stops training when reached at certain level)
- Generator
- Discriminator (Classifier)
- Linear Transformation
- Batch Normalization
- Generator
- Discriminator (Classifier)
- Batch Normalization
- Transpose Convolution
- Generator
- Descrimantor
- BatchNorm
- Transpose Convolution
- Generator
- Critic (Discriminator/Classifier)
- BatchNorm
- Transpose Convolution
- Gradient Penalty (To prevent mode collapse)
- Wasserstein loss
- Word Embedding
- Tokens
- Pad Sequence
- Visualization using Tensorflow Projector