Skip to content

This project combines the model provided by Bert and Milvus to realize a question and answer (QA) system.

Notifications You must be signed in to change notification settings

zilliz-bootcamp/intelligent_question_answering_v2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

❗❗ This repo will no longer be maintained, please visit https://github.com/milvus-io/bootcamp ❗ ❗

README

This project combines Milvus and the model provided by Bert to realize a question and answer system.This project aims to provide a solution to achieve semantic similarity matching with Milvus combined with various AI models.

Data description

The question-and-answer data set needed for this project is a csv file includes questions and answers.

The data set in the data directory is a sample data.

config description

QA/config.py:The script is a configuration file and needs to be modified for the specific environment.

Parameter Description Default setting
MILVUS_HOST milvus service ip 127.0.0.1
MILVUS_PORT milvus service port 19530
PG_HOST postgresql service ip 127.0.0.1
PG_PORT postgresql service port 5432
PG_USER postgresql user name postgres
PG_PASSWORD postgresql password postgres
PG_DATABASE postgresql datebase name postgres
DEFAULT_TABLE default table name milvus_qa
BERT_HOST Bert service ip 127.0.0.1
BERT_PORT Bert service port 5555
collection_param The parameters of collection
search_param The parameters of search {'nprobe': 32}
top_k The number of question 5

Steps to build a project

1.Install Milvus 0.10.4

2.Install PostgreSQL

3.Install the Python packages you need

pip install -r requriment.txt

4.Start the Bert services (more Bert related)

#Download model
$ cd model
$ wget https://storage.googleapis.com/bert_models/2018_11_03/english_L-12_H-768_A-12.zip
#start service
$ bert-serving-start -model_dir /model/english_L-12_H-768_A-12/ -num_worker=2 -max_seq_len=40

If you want to build a Q&A system in other languages, you can download the corresponding language model.

  1. Start the query service
uvicorn main:app --host 127.0.0.1 --port 8000
  1. Enter 127.0.0.1:8000/docs in the web page to view the interface provided by this project.

About

This project combines the model provided by Bert and Milvus to realize a question and answer (QA) system.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages