Skip to content
This repository has been archived by the owner on Feb 22, 2024. It is now read-only.

Commit

Permalink
New translations qrao.po (Spanish (United))
Browse files Browse the repository at this point in the history
  • Loading branch information
qiskit-crowdin-bot committed Jan 14, 2024
1 parent 5fd56f9 commit 071dc0e
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions optimization/docs/locale/es_UN/LC_MESSAGES/explanations/qrao.po
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ msgstr ""
"Project-Id-Version: qiskit-docs\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-11-14 08:10+0000\n"
"PO-Revision-Date: 2023-11-14 09:00\n"
"PO-Revision-Date: 2024-01-14 19:42\n"
"Last-Translator: \n"
"Language: es_UN\n"
"Language-Team: Spanish (United)\n"
Expand All @@ -20,23 +20,23 @@ msgstr ""

#: ../../explanations/qrao.rst:2
msgid "Background on Quantum Random Access Optimization: *Quantum relaxations, quantum random access codes, rounding schemes*"
msgstr ""
msgstr "Antecedentes sobre la Optimización Cuántica de Acceso Aleatorio (Quantum Random Access Optimization): *Relajaciones cuánticas, códigos cuánticos de acceso aleatorio, esquemas de redondeo*"

#: ../../explanations/qrao.rst:4
msgid "This material provides a deeper look into the concepts behind Quantum Random Access Optimization."
msgstr ""
msgstr "Este material proporciona una mirada más profunda a los conceptos detrás de la Optimización Cuántica de Acceso Aleatorio."

#: ../../explanations/qrao.rst:8
msgid "Relaxations"
msgstr ""
msgstr "Relajaciones"

#: ../../explanations/qrao.rst:10
msgid "Consider a binary optimization problem defined on binary variables :math:`m_i \\in \\{-1,1\\}`. The choice of using :math:`\\pm 1` variables instead of :math:`0/1` variables is not important, but will be convenient in terms of notation when we begin to re-cast this problem in terms of quantum observables. We will be primarily interested in `quadratic unconstrained binary optimization (QUBO) <https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization>`__ problems, although the ideas in this document can readily extend to problems with more than quadratic terms, and problems with non-binary or constrained variables can often be recast as a QUBO (though this conversion will incur some overhead)."
msgstr ""
msgstr "Considera un problema de optimización binaria definido sobre variables binarias :math:`m_i \\in \\{-1,1\\}`. La elección de utilizar variables :math:`\\pm 1` en lugar de variables :math:`0/1` no es importante, pero será conveniente en términos de notación cuando comencemos a reformular este problema en términos de observables cuánticos. Estaremos interesados principalmente en problemas de `optimización binaria cuadrática sin restricciones (QUBO) <https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization>`__, aunque las ideas contenidas en este documento pueden extenderse fácilmente a problemas con más que términos cuadráticos, y los problemas con variables no binarias o restringidas a menudo se pueden reformular como QUBO (aunque esta conversión generará alguna subrecarga)."

#: ../../explanations/qrao.rst:22
msgid "Within mathematical optimization, `relaxation <https://en.wikipedia.org/wiki/Relaxation_%28approximation%29>`__ is the strategy of taking some hard problem and mapping it onto a similar version of that problem which is (usually) easier to solve. The core idea here is that for useful relaxations, the solution to the relaxed problem can give information about the original problem and allow one to heuristically find better solutions. An example of relaxation could be something as simple as taking a discrete optimization problem and allowing a solver to optimize the problem using continuous variables. Once a solution is obtained for the relaxed problem, the solver must find a strategy for extracting a discrete solution from the relaxed solution of continuous values. This process of mapping the relaxed solution back onto original problem’s set of admissible solutions is often referred to as **rounding**."
msgstr ""
msgstr "Dentro de la optimización matemática, la `relajación <https://en.wikipedia.org/wiki/Relaxation_%28approximation%29>`__ es la estrategia de tomar un problema difícil y mapearlo en una versión similar de ese problema que es (generalmente) más fácil de resolver. La idea central aquí es que para relajaciones útiles, la solución al problema relajado puede brindar información sobre el problema original y permitir encontrar heurísticamente mejores soluciones. Un ejemplo de relajación podría ser algo tan simple como tomar un problema de optimización discreto y permitir que un solucionador optimice el problema utilizando variables continuas. Una vez que se obtiene una solución para el problema relajado, el solucionador debe encontrar una estrategia para extraer una solución discreta de la solución relajada de valores continuos. Este proceso de mapear la solución relajada nuevamente al conjunto de soluciones admisibles del problema original a menudo se denomina **redondeo**."

#: ../../explanations/qrao.rst:37
#, python-format
Expand Down

0 comments on commit 071dc0e

Please sign in to comment.