Safely store secrets in a VCS repo (i.e. Git, Mercurial, or Subversion). These commands make it easy for you to Gnu Privacy Guard (GPG) encrypt specific files in a repo so they are "encrypted at rest" in your repository. However, the scripts make it easy to decrypt them when you need to view or edit them, and decrypt them for use in production. Originally written for Puppet, BlackBox now works with any Git or Mercurial repository.
A slide presentation about an older release is on SlideShare.
Suppose you have a VCS repository (i.e. a Git or Mercurial repo) and certain files contain secrets such as passwords or SSL private keys. Often people just store such files "and hope that nobody finds them in the repo". That's not safe.
With BlackBox, those files are stored encrypted using GPG. Access to the VCS repo without also having the right GPG keys makes it worthless to have the files. As long as you keep your GPG keys safe, you don't have to worry about storing your VCS repo on an untrusted server. Heck, even if you trust your server, now you don't have to trust the people that do backups of that server, or the people that handle the backup tapes!
Rather than one GPG passphrase for all the files, each person with access has their own GPG keys in the system. Any file can be decrypted by anyone with their GPG key. This way, if one person leaves the company, you don't have to communicate a new password to everyone with access. Simply disable the one key that should no longer have access. The process for doing this is as easy as running 2 commands (1 to disable their key, 1 to re-encrypt all files.)
Automated processes often need access to all the decrypted files.
This is easy too. For example, suppose Git is being used for Puppet
files. The master needs access to the decrypted version of all the
files. Simply set up a GPG key for the Puppet master (or the role
account that pushes new files to the Puppet master) and have that
user run blackbox_postdeploy
after any files are updated.
Getting started is easy. Just cd
into a Git, Mercurial or Subversion
repository and run blackbox_initialize
. After that, if a file is to
be encrypted, run blackbox_register_new_file
and you are done. Add
and remove keys with blackbox_addadmin
and blackbox_removeadmin
.
To view and/or edit a file, run blackbox_edit
; this will decrypt the
file and open with whatever is specified by your $EDITOR environment
variable. When you close the editor the file will automatically be
encrypted again and the temporary plaintext file will be shredded. If
you need to leave the file decrypted while you update you can use the
blackbox_edit_start
to decrypt the file and blackbox_edit_end
when
you want to "put it back in the box."
OBVIOUSLY we don't want secret things like SSL private keys and passwords to be leaked.
NOT SO OBVIOUSLY when we store "secrets" in a VCS repo like Git or Mercurial, suddenly we are less able to share our code with other people. Communciation between subteams of an organization is hurt. You can't collaborate as well. Either you find yourself emailing individual files around (yuck!), making a special repo with just the files needed by your collaborators (yuck!), or just deciding that collaboration isn't worth all that effort (yuck!!!).
The ability to be open and transparent about our code, with the exception of a few specific files, is key to the kind of collaboration that DevOps and modern IT practitioniers need to do.
- The MacPorts Way:
sudo port install vcs_blackbox
- The RPM way:
make packages-rpm
and now you have an RPM you can install. - The Debian/Ubuntu way:
make packages-deb
and now you have a DEB you can install. - The hard way: Copy all the files in "bin" to your "bin".
- The Antigen Way: Add
antigen bundle StackExchange/blackbox
to your .zshrc - The Zgen Way: Add
zgen load StackExchange/blackbox
to your .zshrc where you're loading your other plugins.
Name: | Description: |
---|---|
blackbox_addadmin |
Add someone to the list of people that can encrypt/decrypt secrets |
blackbox_cat |
Decrypt and view the contents of a file |
blackbox_diff |
Diff decrypted files against their original crypted version |
blackbox_edit |
Decrypt, run $EDITOR, re-encrypt a file |
blackbox_edit_start |
Decrypt a file so it can be updated |
blackbox_edit_end |
Encrypt a file after blackbox_edit_start was used |
blackbox_initialize |
Enable blackbox for a GIT or HG repo |
blackbox_postdeploy |
Decrypt all managed files |
blackbox_register_new_file |
Encrypt a file for the first time |
blackbox_removeadmin |
Remove someone from the list of people that can encrypt/decrypt secrets |
blackbox_shred_all_files |
Safely delete any decrypted files |
blackbox_update_all_files |
Decrypt then re-encrypt all files. Useful after keys are changed |
Blackbox automatically determines which VCS you are using and does the right thing. It has a plug-in architecture to make it easy to extend to work with other systems. It has been tested to work with many operating systems.
- Version Control systems
git
-- The Githg
-- Mercurialsvn
-- SubVersion (Thanks, Ben Drasin!)
- Operating system
- CentOS / RedHat
- MacOS X
- Cygwin (Thanks, Ben Drasin!)
To add or fix support for a VCS system, look for code at the end
of bin/_blackbox_common.sh
To add or fix support for a new operating system, look for the case
statements in bin/_blackbox_common.sh
and bin/_stack_lib.sh
and
maybe tools/confidence_test.sh
Note: Cywin support requires the following packages:
- Normal operation:
- gnupg
- git or mercurial or subversion (as appropriate)
- Development (if you will be adding code and want to run the confidence test)
- procps
- make
- git (the confidence test currently only tests git)
GPG has many different ways to encrypt a file. BlackBox uses the mode that lets you specify a list of keys that can decrypt the messsage.
If you have 5 people ("admins") that should be able to access the secrets, each creates a GPG key and adds their public key to the keychain. The GPG command used to encrypt the file lists all 5 key names, and therefore any 1 key can decrypt the file.
To remove someone's access, remove that admin's key name (i.e. email address) from the list of admins and re-encrypt all the files. They can still read the .gpg file (assuming they have access to the repository) but they can't decrypt it any more.
What if they kept a copy of the old repo before you removed access? Yes, they can decrypt old versions of the file. This is why when an admin leaves the team, you should change all your passwords, SSL certs, and so on. You should have been doing that before BlackBox, right?
Why don't you use symmetric keys? In other words, why mess with all this GPG key stuff and instead why don't we just encrypt all the files with a single passphrase. Yes, GPG supports that, but then we are managing a shared password, which is fraught with problems. If someone "leaves the team" we would have to communicate to everyone a new password. Now we just have to remove their key. This scales better.
How do automated processes decrypt without asking for a password?
GPG requires a passphrase on a private key. However, it permits
the creation of subkeys that have no passphrase. For automated
processes, create a subkey that is only stored on the machine
that needs to decrypt the files. For example, at Stack Exchange,
when our Continuous Integration (CI) system pushes
a code change to our Puppet masters, they run blackbox_postdeploy
to decrypt all the files. The user that runs this code has a subkey
that doesn't require a passphrase. Since we have many masters,
each has its own key. And, yes, this means our Puppet Masters
have to be very secure. However, they were already secure because,
like, dude... if you can break into someone's puppet master you own
their network.
If you use Puppet, why didn't you just use hiera-eyaml? There are 4 reasons:
- This works works with any Git or Mercurial repo, even if you aren't using Puppet.
- hiera-eyaml decrypts "on demand" which means your Puppet Master now uses a lot of CPU to decrypt keys every time it is contacted. It slows down your master, which, in my case, is already slow enough.
- This works with binary files, without having to ASCIIify them and paste them into a YAML file. Have you tried to do this with a cert that is 10K long and changes every few weeks? Ick.
- hiera-eyaml didn't exist when I wrote this.
- If you need to, start the GPG Agent:
eval $(gpg-agent --daemon)
- Decrypt the file so it is editable:
blackbox_edit_start FILENAME
- (You will need to enter your GPG passphrase.)
- Edit FILENAME as you desire:
vim FILENAME
- Re-encrypt the file:
blackbox_edit_end FILENAME
- Commit the changes.
git commit -a
orhg commit
Wait... it can be even easier than than!
Run blackbox_edit FILENAME
, and it'll decrypt the file
in a temp file and call $EDITOR
on it, re-encrypting again after the editor
is closed.
Entire files, such as SSL certs and private keys, are treated just like regular files. You decrypt them any time you push a new release to the puppet master.
Puppet example for an encrypted file: secret_file.key.gpg
file { '/etc/my_little_secret.key':
ensure => 'file',
owner => 'root',
group => 'puppet',
mode => '0760',
source => "puppet:///modules/${module_name}/secret_file.key",
}
Small strings, such as passwords and API keys, are stored in a hiera
yaml file, which you encrypt with blackbox_register_new_file
. For
example, we use a file called blackbox.yaml
. You can access them
using the hiera() function.
Setup: Configure hiera.yaml
by adding "blackbox" to the search hierarchy:
:hierarchy:
- ...
- blackbox
- ...
In blackbox.yaml specify:
---
module::test_password: "my secret password"
In your Puppet Code, access the password as you would any hiera data:
$the_password = hiera('module::test_password', 'fail')
file {'/tmp/debug-blackbox.txt':
content => $the_password,
owner => 'root',
group => 'root',
mode => '0600',
}
The variable $the_password
will contain "my secret password" and
can be used anywhere strings are used.
- If you need to, start the GPG Agent:
eval $(gpg-agent --daemon)
- Add the file to the system:
blackbox_register_new_file path/to/file.name.key
This is a manual process. It happens quite rarely.
- Remove the file
keyrings/live/blackbox-files.txt
- Remove references from
.gitignore
or.hgignore
- Use
git rm
orhg rm
as expected.
keyrings/live/blackbox-admins.txt
is a file that
lists which users are able to decrypt files.
(More pedantically, it is a list of the GnuPG key
names that the file is encrypted for.)
To join the list of people that can edit the file requires three steps; You create a GPG key and add it to the key ring. Then, someone that already has access adds you to the system. Lastly, you should test your access.
gpg --gen-key
Pick defaults for encryption settings, 0 expiration. Pick a VERY GOOD passphrase.
blackbox_addadmin KEYNAME
...where "KEYNAME" is the email address listed in the gpg key you created previously. For example:
blackbox_addadmin tal@example.com
When the command completes successfully, instructions on how to commit these changes will be output. Run the command as give.
NEXT STEP: Check these into the repo. Probably with a command like...
git commit -m'NEW ADMIN: tal@example.com' keyrings/live/pubring.gpg keyrings/live/trustdb.gpg keyrings/live/blackbox-admins.txt
Role accounts: If you are adding the pubring.gpg of a role account, you can specify the directory where the pubring.gpg file can be found as a 2nd parameter:
blackbox_addadmin puppetmaster@puppet-master-1.example.com /path/to/the/dir
Ask someone that already has access to re-encrypt the data files. This gives you access. They simply decrypt and re-encrypt the data without making any changes:
gpg --import keyrings/live/pubring.gpg
blackbox_update_all_files
Push the re-encrypted files:
git commit -a
git push
or
hg commit
hg push
Make sure you can decrypt a file. (Suggestion: Keep a dummy file in VCS just for new people to practice on.)
Simply run blackbox_removeadmin
with their keyname then re-encrypt:
Example:
blackbox_removeadmin olduser@example.com
blackbox_update_all_files
When the command completes, you will be given a reminder to check in the change and push it.
Note that their keys will still be in the key ring, but they will go unused. If you'd like to clean up the keyring, use the normal GPG commands and check in the file.
gpg --homedir=keyrings/live --list-keys
gpg --homedir=keyrings/live --delete-key olduser@example.com
git commit -m'Cleaned olduser@example.com from keyring' keyrings/live/*
The key ring only has public keys. There are no secret keys to delete.
Remember that this person did have access to all the secrets at one time. They could have made a copy. Therefore, to be completely secure, you should change all passwords, generate new SSL keys, and so on just like when anyone that had privileged access leaves an organization.
Overview:
To add "blackbox" to a git or mercurial repo, you'll need to do the following:
- Run the initialize script. This adds a few files to your repo in a directory called "keyrings".
- For the first user, create a GPG key and add it to the key ring.
- Encrypt the files you want to be "secret".
- For any automated user (one that must be able to decrypt without a passphrase), create a GPG key and create a subkey with an empty passphrase.
You'll want to include blackbox's "bin" directory in your PATH:
export PATH=$PATH:/the/path/to/blackbox/bin
blackbox_initialize
If you're using antigen, adding antigen bundle StackExchange/blackbox
to
your .zshrc will download this repository and add it to your $PATH.
Follow the instructions for "How to indoctrinate a new user into the system?". Only do Step 1.
Once that is done, is a good idea to test the system by making sure a file can be added to the system (see "How to enroll a new file into the system?"), and a different user can decrypt the file.
Make a new file and register it:
rm -f foo.txt.gpg foo.txt
echo This is a test. >foo.txt
blackbox_register_new_file foo.txt
Decrypt it:
blackbox_edit_start foo.txt.gpg
cat foo.txt
echo This is the new file contents. >foo.txt
Re-encrypt it:
blackbox_edit_end foo.txt.gpg
ls -l foo.txt*
Push these changes to the repo. Make sure another user can check out and change the contents of the file.
i.e. This is how a Puppet Master can have access to the unencrypted data.
An automated user (a "role account") is one that that must be able to decrypt without a passphrase. In general you'll want to do this for the user that pulls the files from the repo to the master. This may be automated with Jenkins CI or other CI system.
GPG keys have to have a passphrase. However, passphrases are optional on subkeys. Therefore, we will create a key with a passphrase then create a subkey without a passphrase. Since the subkey is very powerful, it should be created on a very secure machine.
There's another catch. The role account probably can't check files into Git/Mercurial. It probably only has read-only access to the repo. That's a good security policy. This means that the role account can't be used to upload the subkey public bits into the repo.
Therefore, we will create the key/subkey on a secure machine as yourself. From there we can commit the public portions into the repo. Also from this account we will export the parts that the role account needs, copy them to where the role account can access them, and import them as the role account.
ProTip: If asked to generate entropy, consider running this on the
same machine in another window: sudo dd if=/dev/sda of=/dev/null
For the rest of this doc, you'll need to make the following substitutions:
- ROLEUSER: svc_deployacct or whatever your role account's name is.
- NEWMASTER: the machine this role account exists on.
- SECUREHOST: The machine you use to create the keys.
NOTE: This should be more automated/scripted. Patches welcome.
On SECUREHOST, create the puppet master's keys:
$ mkdir /tmp/NEWMASTER
$ cd /tmp/NEWMASTER
$ gpg --homedir . --gen-key
Your selection?
(1) RSA and RSA (default)
What keysize do you want? (2048) DEFAULT
Key is valid for? (0) DEFAULT
# Real name: Puppet CI Deploy Account
# Email address: svc_deployacct@hostname.domain.name
NOTE: Rather than a real email address, use the username@FQDN of the host the key will be used on. If you use this role account on many machines, each should have its own key. By using the FQDN of the host, you will be able to know which key is which. In this doc, we'll refer to username@FQDN as $KEYNAME
Save the passphrase somewhere safe!
Create a sub-key that has no password:
$ gpg --homedir . --edit-key svc_deployacct
gpg> addkey
(enter passphrase)
Please select what kind of key you want:
(3) DSA (sign only)
(4) RSA (sign only)
(5) Elgamal (encrypt only)
(6) RSA (encrypt only)
Your selection? 6
What keysize do you want? (2048)
Key is valid for? (0)
Command> key 2
(the new subkey has a "*" next to it)
Command> passwd
(enter the main key's passphrase)
(enter an empty passphrase for the subkey... confirm you want to do this)
Command> save
Now securely export this directory to NEWMASTER:
$ gpg --homedir . --export -a svc_sadeploy >/tmp/NEWMASTER/pubkey.txt
$ tar cvf /tmp/keys.tar .
$ rsync -avP /tmp/keys.tar NEWMASTER:/tmp/.
On NEWMASTER, receive the new GnuPG config:
sudo -u svc_deployacct bash
mkdir -m 0700 -p ~/.gnupg
cd ~/.gnupg && tar xpvf /tmp/keys.tar
Back on SECUREHOST, add the new email address to keyrings/live/blackbox-admins.txt:
cd /path/to/the/repo
blackbox_addadmin $KEYNAME /tmp/NEWMASTER
Verify that secring.gpg is a zero-length file. If it isn't, you have somehow added a private key to the keyring. Start over.
$ cd keyrings/live
$ ls -l secring.gpg
Commit the recent changes:
$ cd keyrings/live
git commit -m"Adding key for KEYNAME" pubring.gpg trustdb.gpg blackbox-admins.txt
Regenerate all encrypted files with the new key:
blackbox_update_all_files
git status
git commit -m"updated encryption" -a
git push
On NEWMASTER, import the keys and decrypt the files:
sudo -u svc_sadeploy bash # Become the role account.
gpg --import /etc/puppet/keyrings/live/pubring.gpg
export PATH=$PATH:/path/to/blackbox/bin
blackbox_postdeploy
sudo -u puppet cat /etc/puppet/hieradata/blackbox.yaml # or any encrypted file.
ProTip: If you get "gpg: decryption failed: No secret key" then you forgot to re-encrypt blackbox.yaml with the new key.
On SECUREHOST, securerly delete your files:
cd /tmp/NEWMASTER
# On machines with the "shred" command:
shred -u /tmp/keys.tar
find . -type f -print0 | xargs -0 shred -u
# All else:
rm -rf /tmp/NEWMASTER
Also shred any other temporary files you may have made.
I welcome code changes, questions, bug reports and feedback!
- Submit code: https://github.com/StackExchange/blackbox
- Report bugs/questions: https://github.com/StackExchange/blackbox/issues
Tip for submitting code:
After you make a change, please re-run the confidence tests. This runs through various procedures and checks the results.
To run the tests:
make confidence
Note: The tests currently assume "git" and have been tested on CentOS and Cygwin.
Here are other open source packages that do something similar to Blackbox. If you like them better than Blackbox, please use them.
- Pass: http://www.zx2c4.com/projects/password-store/
- Transcrypt: https://github.com/elasticdog/transcrypt
- git-crypt: https://www.agwa.name/projects/git-crypt/
This content is released under the MIT License. See the LICENSE.txt file.